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Abstract

We study the contribution of health shocks to earnings inequality and uncertainty in
labor market outcomes. We calibrate a life-cycle model of labor supply and savings that
incorporates health and health shocks. Our model features endogenous wage formation
via human capital accumulation, employer sponsored health insurance, and means-
tested social insurance. We find a substantial part of the impact of health shocks on
earnings arises via reduced human capital accumulation. Health shocks account for 15%
of lifetime earnings inequality for U.S. males, with two-thirds of this due to behavioral
responses. In particular, it is optimal for low-skill workers – who often lack employer
sponsored insurance – to curtail labor supply to maintain eligibility for means-tested
transfers that protect them from high health care costs. This causes low-skill workers
to invest less in human capital. Provision of public health insurance can alleviate this
problem and enhance labor supply and human capital accumulation.
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1 Introduction
In this paper we study the impact of health shocks on earnings and life-cycle earnings

inequality. Smith (2004) documents the effects of major health shocks on earnings in the
Health and Retirement Study (HRS), finding large negative effects over horizons of two to ten
years. We extend this work by embedding health shocks in a life-cycle labor supply framework
incorporating endogenous human capital formation. Our structural estimation framework
enables us to distinguish between direct effects of health shocks on earnings, and indirect

effects operating through their impact on labor supply, human capital accumulation, savings
and other behaviors. We find the behavioral responses to health shocks greatly amplify their
impact on earnings and life-cycle earnings inequality. Our structural model also allows us to
assess how changes in the economic environment, such as providing health insurance to the
uninsured, would alter labor supply, earnings inequality and savings behavior.

Since its inception in work by MaCurdy (1981) and Heckman and MaCurdy (1980), the
life-cycle labor supply literature has emphasized how agents respond differently to temporary
vs. persistent and predictable vs. unpredictable wage shocks. In extending the life-cycle
model to include health shocks, it is important to recognize that they can also be categorized
in this way. Thus, in our model, people are subject to health shocks that may be temporary
or persistent, and unpredictable or predictable. This lets us analyze how different types of
health shocks affect the evolution of earnings over the life-cycle. We find that persistent
unpredictable shocks have the greatest impact on earnings and earnings inequality.

Our framework allows us to study how health risk affects human capital accumulation.
In our model individuals accumulate human capital via learning-by-doing, as in Keane and
Wolpin (1997) and Imai and Keane (2004). Returns to current investments in human capital
depend on expected future labor supply, which is reduced by poor health and/or adverse
health shocks. Our framework allows us to predict the dynamic effect of a health shock on
future earnings, incorporating the impact on the evolution of human capital after the shock.1

Our results imply that a large part of the impact of health shocks on earnings arises
from the behavioral responses to those shocks. For example, for a 40 year-old male college
graduate, our model implies that a major persistent health shock reduces the present value
of remaining lifetime earnings by $45k or 4.5%. We estimate that fully 40% of this impact
is due to the knock-on effect of reduced human capital accumulation after the shock.

Turning to earnings inequality, if we simulate a counterfactual environment with health
shocks eliminated, the Gini coefficient for the present value of lifetime earnings falls by 15%.
But if we do the same experiment holding decision rules for labor supply and consumption
fixed, the Gini falls by only 5%. Thus, two-thirds of the impact of health shocks on inequality
arises through the behavioral response to health risk, as opposed to the direct effects of health
shocks themselves. Much of our analysis is devoted to better understanding the direct and
behavioral channels through which health shocks affect earnings inequality:

First, consider the “direct” channels through which health shocks contribute to earnings
inequality in a fixed environment: Differential exposure to health shocks over the life-cycle
generates increasing inequality with age in health status, which directly affects productivity

1We define “human capital” as skill generated by education and work experience. We distinguish this from
“health.” Both affect worker productivity in our model. The distinction is useful as it lets us distinguish direct
effects of health shocks on earnings from indirect effects operating through human capital accumulation.
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(hence wage offers) and tastes for work. Lost work time due to health shocks also generates
increasing inequality with age in accumulated work experience and human capital.

Second, consider the behavioral channels: In an environment with health shocks, low-
skill workers, who often lack private insurance, have an incentive to curtail their labor supply
to maintain eligibility for means-tested social insurance. This reduces their rate of human
capital accumulation.2 Conversely, health risk has a positive effect on labor supply of high-
skill workers, who wish to work and save more in order to self-insure against medical expenses.
Thus, health risk induces low-skill workers to work less, and high-skill workers to work more.
These behavioral forces can explain roughly 10% of lifetime earnings inequality.

A brief overview of our model is as follows: Individuals begin every period with stocks of
health, assets and human capital. Working age individuals receive employment offers that
they accept or reject. A fraction of offers include employer provided health insurance. Wage
offers depend on human capital and health, which are subject to transitory and persistent
shocks. The disutility of working depends on health. After the employment decision is made,
health shocks (of different types) occur with probabilities that depend on health status.
These health shocks determine medical expenditures and sick days suffered by workers.
Finally, individuals make consumption/savings decisions. At the start of the next period,
new stocks of health and human capital are revealed (based on their laws of motion).

Some aspects of the model deserve further comment: Following De Nardi et al. (2010)
and French and Jones (2011), we model medical expenditures as cost shocks. If a health
shock occurs, the realized cost of treatment (net of insurance) must be borne by the agent.3
An alternative is to treat medical expenditures as generated by voluntary choices to invest
in health, as in Grossman (1972). But we argue that most medical expenditure can be
better thought of as driven by cost shocks, particularly as only a small fraction of medical
expenditure is devoted to preventive medicine.4

To assess how health shocks impact labor supply and earnings, it is important to account
for the role of social insurance. Following Hubbard et al. (1995), and numerous subsequent
papers such as De Nardi et al. (2010) and French and Jones (2011), we assume workers
with sufficiently low income/assets qualify for a transfer that guarantees a minimum level of
consumption. This consumption floor is designed to capture, in a simple way, an array of
benefits such as Foodstamps, Medicaid and Disability.

We also incorporate private and public health insurance. In our model, workers receive
job offers that may or may not include employer sponsored health insurance. This is a key
aspect of the US environment, with its employer-based insurance system for those under 65.
Workers operating at the consumption floor receive public coverage for medical expenses,
approximating the means-tested Medicaid public insurance program.

In this environment, we show how means-tested social insurance reduces incentives to
supply labor and invest in human capital. Accounting for health risk (on top of wage risk)

2Low-skill workers have lower labor supply from early in the life-cycle, due to low wages and the option to
use means-tested insurance. Unemployment and low incomes lead to worse health as they age. This creates
a vicious cycle, as worse health feeds back to further lower wages and labor supply.

3Our view is that patients have little ability to know the cost of their treatment ex-ante, or to make
informed choices whether to bear that cost. Hence, they pay for whatever treatment is prescribed. Thus,
medical expenditure is not a choice, but rather an exogenous realization from an expenditure distribution.

4For example, in 2015 spending on preventive as a fraction of total health spending was only 2.9% in the
U.S. (www.oecd.org/els/health-systems/health-data.htm). Most spending is on treatment of specific illness.
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magnifies this effect: Low-skill workers often lack private health insurance, so they face
considerable consumption risk from both wage and health shocks. This creates a strong
incentive to curtail labor supply to maintain eligibility for means-tested social insurance.5

We also analyze the impact of providing public health insurance to people who lack
employer provided insurance. Coverage of health expense risk reduces the incentive for low
skill workers to curtail labor supply to maintain eligibility for means-tested social insurance.
As a result, they work more and acquire more human capital. Through this positive labor
supply mechanism, public health insurance raises additional tax revenue and saves on means-
tested social insurance costs – thus counteracting a large share of the cost of its provision.
To our knowledge this benefit of public health insurance has not been noted previously.

We calibrate our model to the U.S. male population using the Medical Expenditure
Panel Survey (MEPS). The MEPS contains detailed information on respondents’ medical
conditions, coded according to the International Classification of Diseases (ICD). Based on
expert medical advice, we categorized medical conditions according to (i) whether they affect
productivity, (ii) whether they are risk factors for other health problems, (iii) predictability,
and (iv) persistence.6 The MEPS also contains detailed measures of total and out-of-pocket
medical expenditures. Using this information, we estimate stochastic processes for health,
health shocks, and medical costs. These are important inputs to our model.7

The outline of the paper is as follows. Section 2 reviews the literature and Section 3
presents our model. Section 4 describes our MEPS data. Section 5 describes the calibration,
and section 6 discusses model fit. Section 7 presents results and Section 8 concludes.

2 Relation to Literature
Our paper contributes to the literature on earnings inequality by assessing the importance

of health risk as a contributing factor. We also contribute to the rapidly growing literature
on life-cycle models with health uncertainty (e.g., Palumbo 1999, French 2005, Jeske and
Kitao 2009, Khwaja 2010, Attanasio et al. 2010, De Nardi et al. 2010, French and Jones
2011, Kitao 2014, Capatina 2015, Pashchenko and Porapakkarm 2017, Jung and Tran 2016,
De Nardi et al. 2017, Cole et al. 2018, and Hosseini et al. 2018). We extend this work by
using a richer model of the health process, and by incorporating endogenous human capital.

Our work is closely related to the reduced form literature on effects of health shocks on
employment and earnings. Much of that work defines health shocks as changes in the stock
of self-reported or objective health (Au et al. 2005, García Gómez and López Nicolás 2006,
Lenhart 2019). These papers find declining health reduces earnings and employment.

Because the stock of health and employment/earnings are jointly determined over the
life-cycle, Smith (1999, 2004) argues the best way to identify the effect of health on labor
market outcomes is to control for baseline health and human capital and estimate effects of
the onset of specific health shocks. Adopting this approach, he finds that onset of cancer,
heart and lung disease have substantial negative effects on employment and earnings. For

5As in Hubbard et al. (1995), low-skill workers in our model also have an incentive to accumulate less
assets to maintain eligibility for means-tested social insurance, as the means test involves income and assets.

6We thank Dr Philip Haywood for his assistance in classifying health shocks based on the ICD codes.
7We also use the CEX, CPS and PSID to estimate various moments that are used in the calibration.
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example, in the HRS he estimates a cumulative income loss of $37k over ten years (1994-
2003) following a major health shock. Using a similar approach, Pelkowski and Berger (2004)
find that onset of permanent health conditions reduces wages and hours.

Our work can be viewed as a structural extension of this type of analysis, where we build
health shocks into a life-cycle labor supply model. As we emphasized in the introduction,
our model distinguishes several mechanisms through which health shocks affect labor market
outcomes. As we also discussed in the introduction, we classify health shocks as persistent vs.
transitory and predictable vs. unpredictable, as these types of shocks should have different
impacts on earnings, labor supply and consumption. To our knowledge, the only prior work
that estimates effects of persistent vs. transitory health shocks on employment and earnings
is Blundell et al. (2016), who find much larger effects of persistent shocks.

We also contribute to the literature on life-cycle models of human capital accumulation
(e.g., Shaw 1989, Eckstein and Wolpin 1989, Keane and Wolpin 1997, 2001, Imai and Keane
2004) by incorporating health and health shocks into a model of learning-by-doing. A prior
paper that incorporates both health and learning-by-doing in a life-cycle model is Hokayem
and Ziliak (2014). We substantially extend their work by adopting a full solution approach,
so we can do policy experiments. We also model the participation margin of labor supply,
adopt a richer specification of the health process, and treat health spending very differently:
They assume a Grossman (1972) model where medical expenditures are voluntary choices to
invest in health. We instead follow De Nardi et al. (2010) and French and Jones (2011) and
model medical spending as a cost of treatment for health shocks (and hence a risk) rather
than an investment. We argue most medical expenditure is better thought of as due to cost
shocks, as only a small fraction of medical expenditure is devoted to preventive medicine.

Our paper is also related to the literature studying how means-tested social insurance
affects labor supply (see Hubbard et al. 1995, Moffitt 1992). We extend recent papers that
study how means-tested insurance interacts with health risk: French and Jones (2011) study
the effects of employer-based health insurance, Medicare and Social Security on labor supply
and retirement behavior. Benıtez-Silva et al. (2010), Low and Pistaferri (2015), and Kitao
(2014) study the impact of Disability Insurance on employment decisions. Moffitt and Wolfe
(1992) and Pashchenko and Porapakkarm (2017) study work disincentives created by the
means-tested Medicaid public health insurance program. We contribute to this literature
by studying how means-tested social insurance reduces human capital accumulation and
increases earnings inequality in an environment with both wage and health risk.

There is a large literature that studies the impact of education on health, but it faces
difficult problems in assessing the direction of causality. Important recent work by Conti
et al. (2010a,b), Heckman et al. (2018) and Hai and Heckman (2019) estimates significant
positive effects of education on health, controlling for selection into education based (in
part) on latent initial skills and initial health, which they control for using proxy variables
in dynamic factor models. For instance, Hai and Heckman (2019) find that “endowments” of
skill and health at age 16 are positively correlated. The correlation grows with age because
youth with high initial levels of skill and health invest more in both health and education,
and because education complements health investments.8, 9 To capture this complementarity

8In related work, García and Heckman (2020) use random assignment into early childhood education
programs to document strong positive effects of education on health.

9See also Adams et al. 2003, Stowasser et al. 2011, Lochner 2011 and Oreopoulos and Salvanes 2011.
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we let the law of motion for health differ flexibly across education groups. But we do not
attempt to estimate the causal effect of education on health: Our model starts at age 25 and
takes education as given. We focus exclusively on interactions between health and human
capital accumulation after school completion and labor market entry.

Finally, there is a literature on how income, wealth and employment shocks affect health.
As Smith (1999, 2004) discusses, this literature also faces difficult issues of assessing causality.
He recommends analyzing effects of employment and earnings shocks on health status while
controlling for lagged health and human capital. Alternatively, several papers examine effects
of exogenous job separations on health (Eliason and Storrie 2009, Black et al. 2015, Schaller
and Stevens 2015). They find job loss leads to worse health behaviors, worse self-reported
health, and worse mental health. But they do not find short-run effects on chronic conditions
or frequency of health shocks. Similarly, Adda et al. (2009) look at effects of permanent and
transitory income shocks on health using cohort level data. They find no effects on health
over a 3-year horizon, but they do find effects on mortality and health related behaviors.

We argue that to estimate the effects of income and employment on health, it is impor-
tant to control for health shocks in the health production function. Health shocks reduce
contemporaneous earnings and labor supply. Hence, unemployment may be associated with
worse health transitions in part because unobserved persistent health shocks reduce current
labor supply and also lead to worse health transitions. This may lead to an upward bias in
the estimated effect of employment on health. We contribute to this literature by estimating
the effect of employment (and income) on health transitions using a model that explicitly
controls for the onset of persistent health shocks, eliminating this potential bias.

3 Model
In our life-cycle model agents face idiosyncratic risk to wages, employment, earnings,

health and survival. They enter the economy at age 25 and face survival risk every period.
The model period is one year, and the maximum lifespan is 100. Retirement is exogenous
at age 65. From age 25 to 64, agents receive employment offers probabilistically each year,
and decide on whether to accept or reject them. They also make a continuous consump-
tion/savings decision, but borrowing is not allowed. Workers accumulate human capital
through work experience. The model is solved in partial equilibrium, assuming a fixed in-
terest rate and a fixed rental rate on skill.

Education is taken as given at age 25 when agents enter the model. We assume three edu-
cation groups: high school (HS) or less, some college (1-3 years), and college graduates.10 We
allow most model parameters, including the health and human capital production functions,
tastes for leisure and job offer probabilities, to differ by education group. Consistent with
prior work, we find the heath production function differs in important ways by education,
but a limitation of our analysis is that we do not attempt to explain why.11

10These three education groups make up 40%, 27% and 33%, respectively, of the working age population
in the CPS from 2000-2010. The fraction of HS dropouts is relatively small (11%), so we combine them with
the HS graduates (29%).

11This is consistent with work by Hai and Heckman (2019), who estimate that education is complementary
with inputs into health production.
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3.1 The Timing of Decisions and Shocks

Agents begin each period (t) with stocks of assets At, human capital HCt, functional
health Ht, and asymptomatic risk factors Rt. Working age individuals in poor functional
health also know their disability insurance (DI) status IDI

t
, which affects the level of govern-

ment transfers received. Immediately after the start of the period, working age individuals
receive an employment offer, which can be full or part-time, and with or without employer
sponsored health insurance. Wage offers are determined by health and human capital and
are subject to temporary and persistent shocks. Agents decide whether to accept or reject
the tied wage/hours/insurance offer. Then health shocks are realized. These, together with
functional health, determine mortality, medical expenditures and sick days. Sick days reduce
work hours and reduce the accumulation of human capital. Next, agents make a continuous
consumption/saving decision. Finally, next period state variables become known, and the
next period begins. We let t denote both the time period and the age of the individual.

3.2 Health and Health Shocks
An important feature of our model is a detailed specification of the processes for health

and health shocks over the life-cycle. There are two stocks of health: functional health (Ht)
and underlying asymptomatic health risk (Rt). And in each period agents can experience
three types of health shocks: predictable and persistent (dpt ), unpredictable and persistent
(du

t
), and unpredictable and transitory (st). Section 4 explains how we classify dimensions

of health and types of health shocks using the MEPS data. Here, we take the classification
as given and explain how health and health shocks operate in the model:

Functional health status Ht measures the ability to perform daily activities and function
in a work environment. Thus, it impacts on productivity. It is discrete and can take three
values: poor, fair or good (Ht 2 {P, F,G}). In contrast, the stock of underlying health risk
Rt has no impact on current productivity. Rt captures asymptomatic risk factors whose only
effect is to increase the probability of predictable health shocks (dpt ) in the future. Examples
are obesity and high cholesterol, which increase the probability of heart disease. Rt is also
discrete with three values: low, medium or high (Rt 2 {L,M,H}). Ht and Rt evolve from
year-to-year with transition probabilities that we describe below.

Let ⌥t = (dpt , d
u

t
, st) be a vector of indicator functions for occurrence of health shocks. All

three types of health shock affect ability to function in the current period. The persistence of
shocks is categorized as short or long-term. For example, a broken limb is a short-term shock
that affects the individual only in the current period. Long-term shocks, such as damage to
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the spinal column, have effects that last for multiple periods. Our model captures this by
letting the transition probabilities for Ht and Rt depend on persistent shocks (dpt , dut ).

Persistent shocks are classified as predictable (dpt ), or unpredictable (du
t
). We assume all

transitory shocks (st) are unpredictable.12 The “predictable” shocks (dpt ) have a probability
of occurrence that depends on Ht and Rt, along with age and education. Examples are stroke
and lung cancer. Probabilities of “unpredictable” shocks du

t
and st depend only on age.

The following table lists the state variables that enter the transition probabilities for Ht

and Rt and the probabilities of health shocks dpt , dut and st. For example, functional health
Ht evolves according to a transition matrix that depends on the current level of H, age,
long-term health shocks (dpt , dut ), employment and health insurance status (summarized by
the categorical variable O), education, and income group (inc). We assume the probabilities
of initial levels of H and R at age 25 depend only on education.

Variable Transition Probability Matrix / Probability
Ht ⇤H(H 0, H, t, dp, du, O, educ, inc)
Rt ⇤R(R0, R, t, dp, du, H,O, educ, inc)
dpt �dp(R,H, t, educ)
du
t

�du(t)
st �s(t)

Finally, the survival probability (year-to-year) depends on functional health, age, and
long-term health shocks, and is given by '(Ht, t, d

p

t , d
u

t
). The risk factors R affect the survival

probability indirectly, by altering the probability of adverse health shocks dpt .

3.3 Medical Expenditures
As in De Nardi et al. (2010) and French and Jones (2011), we treat medical expenditures

as exogenous cost shocks. They are are given by the function ME(Ht,⌥t, t, "ME), which
depends on health Ht, health shocks ⌥t = (dpt , d

u

t
, st), age t, and a stochastic term "ME. The

shock "ME determines whether the person must bear the “normal” treatment cost associated
with their state ("ME = 0), or a higher “catastrophic” level of cost ("ME = 1). We assume
the probability of a catastrophic shock � = Pr("ME = 1) is uniform across health states, but
the catastrophic level of costs is allowed to vary by health state (Ht,⌥t, t).

We assume that all individuals must bear the cost of treatment associated with their
medical condition (as drawn from ME(.)). In reality people may have choices about their
course of treatment, and thus have some control over costs. But we abstract from this, in
effect assuming people lack the medical knowledge to make such decisions. Thus, medical
expenditures are non-discretionary, and they do not directly affect health in our model.

Our model directly captures the costs of health shocks dpt , dut and st only in the year in
which they occur. However, persistent health shocks dpt and du

t
lead to higher probabilities

of poor health in future periods, and hence higher expected future medical expenditures.

12In the data section, Section 4, we show there are very few medical conditions that are predictable but
short lasting. So it did not seem worthwhile to complicate the model by including this additional type of
shock.
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3.4 Health Insurance
Health insurance is of three types: (1) employer provided, (2) Medicare, and (3) all

other forms of public insurance captured by the consumption floor. Employer provided
insurance is available to a fraction of workers, as described in the next section. Workers
whose employers provide health insurance pay a (subsidized) out-of-pocket premium pEI .13

Employer insurance pays a fraction qEI of workers total medical costs. Medicare is available
to those 65 and older, and it covers a fraction qMed of medical costs. The Medicare premium
is pMed is paid by those 65 and over, and a payroll tax ⌧Med is paid by workers.

Given their resources, some individuals may be unable to afford the level of medical costs
they draw from ME(.) while also maintaining a minimum level of consumption. In such
cases, we assume the government provides a guaranteed consumption floor, described in
Section 3.6. This is meant to capture programs like Medicaid that cover medical expenses of
the poor, as well as other social programs like Foodstamps. It also captures the possibilities
of simply not paying hospital bills or declaring medical bankruptcy.14

Finally, to capture disability insurance benefits in a simple way, we assume working age
people in poor functional health are probabilistically eligible for a higher consumption floor
(see Benítez-Silva et al. 1999, Low and Pistaferri 2015). This is meant to approximate
benefits from the SSI and SSDI programs. See Section 3.6 for details.

3.5 Employment
3.5.1 Employment Offers

At the start of each period, and before health shocks are realized, individuals aged 25 to
64 receive employment offers probabilistically. If an offer is received, an individual decides
whether to accept or reject it. Employment offers are characterized by a wage, number of
hours, and the provision of employer health insurance. Letting ⇤ superscripts denote offers,
we have: {W ⇤, h⇤, ins⇤}. Wage offers are continuous, and are described in detail in Section
3.5.4. The number of hours h⇤ takes one of three values, 0 (no offer), hrsPT (part-time)
or hrsFT (full-time), h⇤ 2 {0, hrsPT , hrsFT}. Insurance ins⇤ 2 {0, 1} is an indicator for
whether the offer includes health insurance. We let the categorical variable O⇤ summarize
employment offers based on the five possible combinations of hours and insurance.15

The probability of receiving each type of offer O⇤ depends on education and age, and
is given by ⇧(O⇤, educ, t). To help capture the decline in hours at older ages observed in
the data, we allow for a positive probability of receiving no offer at ages 54+. This may be
interpreted as a simple way to capture various reasons that employers are reluctant to hire
older workers. At younger ages, all non-employment is voluntary.

When employment offers are accepted or rejected, medical expenditures are not yet
known, as health shocks occur after the decision is made. However, individuals know Ht

and Rt, so they can calculate expected medical expenditures.

13Employers pay 81% of the health insurance premium for singles on average (Kaiser Family Foundation
2010). We only model the part paid by the employee, which does not vary based on personal characteristics.

14As we rule out borrowing, we cannot explicitly model bankruptcy decisions.
15Specifically, the five possibilities are: no offer (h = 0), part-time offer with and without insurance, and

full-time offer with and without insurance.
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After individuals accept/reject their employment offer(s), employment and health insur-
ance status are summarized by the categorical variable O = {W,h, ins}.

3.5.2 Hours Worked and Sick Days

When an individual accepts an employment offer, he commits to working h⇤ hours at
wage W ⇤. This commitment is fulfilled unless the worker experiences sick days. Sick days
sd(educ,Ht,⌥t) are a function of education, health and health shocks. The actual number
of hours worked by employed workers is given by ht = h⇤ � sd(educ,Ht,⌥t).

We assume health shocks do not affect wages within a period. Employers cannot lower
wages immediately if an employee receives a negative health shock. However, health shocks
may force workers to reduce work hours so as to attend doctor appointments, undergo
treatment, or simply rest. Thus, the model captures the fact that a worker may have high
human capital and high wages, yet, have little earning capacity for health reasons. We allow
sick days to vary by education level to capture the fact that ability to work after health
shocks differs by occupation. We assume all sick days are unpaid.16

3.5.3 Human Capital Accumulation via Work Experience

Let HC denote the time-varying component of human capital that depends on work
experience. It evolves probabilistically according to the law of motion:

HCt+1 = (HCt + ht)"
HC

t+1 (3.1)

where "HC is a shock governed by:

"HC

t+1 =

8
><

>:

1 + ⌫ with probability p1(educ, Iw)

1 with probability 1� p1(educ, Iw)� p2(educ, Iw)

1� ⌫ with probability p2(educ, Iw)

(3.2)

Probabilities of human capital “shocks” (i.e., increments) depend on education and an
indicator Iw equal to 1 if an agent is employed and 0 otherwise. We expect more educated
employed workers are more likely to receive positive shocks, given the evidence they have
faster wage growth with experience (Imai and Keane (2004)). We expect unemployed workers
are more likely to receive negative shocks, due to skill depreciation during unemployment.

3.5.4 The Wage Offer Function

The wage offer function is given by (suppressing time subscripts):

lnW ⇤ = w(educ,HC,H, h⇤) + j(educ) + "W (3.3)

w(educ,HC,H, h⇤) = �0 + �1HC + �2HC2 + �3HC3 + �4IH2{F,G} + �5IH=G + �6Ih⇤=hrsPT

(3.4)

where the parameters �0 � �6 of 3.4 are all allowed to be education-level specific.
16In reality, workers have on average 7 paid sick days per year (BLS Statistics).
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Thus, the function w(educ,HC,H, h⇤) combines human capital (determined by education
educ and work experience HC) with functional health H to determine the mean of the (log)
wage offer distribution. Health enters through the health status indicator functions IH2{F,G}
and IH=G, which indicate fair or good health, and good health, respectively. Effects of
both health and experience are allowed to differ by education. We also let the mean of the
wage offer distribution depend on Ih⇤=PT , and indicator equal to one for part-time offers,
to capture the observation that part time-wages tend to be lower than full-time wages - see
Moffitt (1984), Lundberg (1985), and Aaronson and French (2004).

As we see in equation 3.3, wage offers W ⇤ depend on (1) the function w(educ,HCt, H, h⇤)
that determines the mean of the offer wage distribution, (2) the agent’s latent productivity
type j, and (3) transitory shocks "W

t
. The latent type  is age invariant and discrete, with

j indexing types. It is mean zero, but with dispersion that differs by education level (see
Section 5.2.4 for details). Transitory wage shocks are distributed as "W ⇠ N(0, �2

"W
(educ)).

To summarize, human capital consists of a fixed part determined by educ and  and a
time varying part HC governed by work experience and persistent shocks. Human capital
and health combine to determine wage offers. Persistent shocks to wages arise from three
sources: 1) the persistent shocks "HC

t+1 to the human capital process in 3.1, 2) persistent health
shocks that affect wages through persistent effects on H, and 3) long-term effects that arise
endogenously through workers’ responses to all current period shocks, as these responses are
embedded in the next period’s human capital and assets. For instance, a shock that reduces
labor supply today will reduce next period’s HC via the law of motion in equation 3.1.

3.6 Taxes, Social Security and Social Insurance
At age 65 we assume all workers retire and start to receive Social Security payments.

Social Security rules are complex, and our focus is on sources of earnings uncertainty for
working age men, so we abstract from the details of the rules. We simply assume the Social
Security benefit is a constant SS(educ) that depends only on education.17

For individuals aged 25 to 64, taxable income yt equals the sum of labor and capital
income, minus the employee health insurance premium pEI for those with insurance, and
minus the tax deductible part of out-of-pocket medical expenditures (i.e., expenses in excess
of 7.5% of income). The taxable income for retirees is similar, except Social Security income
replaces labor income. Letting Iw be an indicator for employment, we have:

yt<65 = max[0, rA+ Iw(W
⇤h� pEIins⇤)�max(0,ME(1� qEIIwins

⇤)� 0.075(rA+ IwW
⇤h))]

yt�65 = max[0, rA+ SS �max(0,ME(1� qMed)� 0.075(rA+ SS))] (3.5)

We follow Jeske and Kitao (2009) and Pashchenko and Porapakkarm (2017) in modeling
income taxes. All individuals pay an income tax T (yt) that consists of a progressive and a
proportional tax. The function T (y) includes non-linear and linear components:

T (y) = a0[y � (y�a1 + a2)
�1/a1 ] + ⌧yy. (3.6)

17This is a common assumption in the macro-health literature that focuses on working age individuals.
See for example Jung and Tran (2016), Pashchenko and Porapakkarm (2017) and De Nardi et al. (2017) who
also assume that Social Security payments depend only on fixed types.
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The non-linear component approximates the progressive US federal tax schedule, following
Gouveia and Strauss (1994). The linear component captures other taxes, such as State taxes.

Workers also face payroll taxes. They pay a Medicare tax ⌧Med (on earnings minus the
premium pEI) and a Social Security tax ⌧SS (on earnings minus the premium pEI , up to the
income threshold y

ss
). Total income and payroll taxes are given by:

Tax = T (y) + Iw[⌧
SSmin(W ⇤h� pEIins⇤, y

ss
) + ⌧Med(W ⇤h� pEIins⇤)] (3.7)

Consumption is taxed at the rate ⌧ c, which captures sales taxes.
We assume there exists a public social welfare program that guarantees a minimum level

of consumption c̄(educ, IDI) to every individual. This consumption floor approximates a
range of benefits we do not explicitly model, such as Medicaid, Food stamps, unemployment
benefits, workers’ compensation, Social Security Disability Insurance (SSDI), and Supple-
mental Security Income (SSI). IDI is a 1/0 indicator for disability insurance (DI) eligibility.

As we noted in Section 3.4, our model incorporates a simple form of disability insurance.
Individuals are eligible for disability with a probability ⌘(educ,H, t) that depends on educa-
tion, functional health, and age. Only working age individuals in poor health have positive
probability of DI eligibility. Those eligible for DI have a higher level of the consumption
floor c̄(educ, IDI). We calibrate c̄(educ, IDI) to match benefits observed in the data.

When disposable income (net of medical costs) falls below c̄, the person receives a transfer
tr that compensates for the difference. Thus the transfer is given by:

trt<65 = max{0, (1 + ⌧ c)c̄+ME(1� qEIIwins
⇤)� (1 + r)A� Iw(W

⇤h� pEIins⇤) + Tax}
trt�65 = max{0, (1 + ⌧ c)c̄+ME(1� qMed) + pMed � (1 + r)A� SS + Tax} (3.8)

3.7 Preferences
In each period, agents derive utility from consumption (c) and leisure (l). The within-

period utility function is given by:

u(c, l) =
1

1� �
[c↵l(1�↵)](1��) + ⇣Ideath. (3.9)

Leisure is equal to the total time endowment (normalized to one) minus the dis-utility of
work expressed in units of leisure time, given by �(educ,H, h⇤). We have:

l = 1� Iw�(educ,H, h⇤). (3.10)

The time cost of work depends on education, health and hours of work (part-time or
full-time). Workers in poor health must expend more effort to work any agreed number
of hours h⇤, so they have greater dis-utility of work (expressed in leisure units). Also, the
dis-utility of work � depends on h⇤, not on the actual number of hours worked after sick
days are realized h. This embeds an assumption that sick days provide no additional leisure
to workers. For retirees, leisure is equal to 1, so utility is only a function of consumption.

The utility function in 3.9 creates an incentive for individuals to smooth the consump-
tion/leisure aggregate c↵l(1�↵) over time. This causes consumption to drop at retirement.
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Also, given that poor health reduces effective leisure time of workers in 3.10, consumption
will tend to increase if workers are in poor health (ceteris paribus).

We assume a utility cost of death ⇣ that is incurred only in the period when the individual
dies, in which case the indicator Ideath = 1. We introduce this feature because the first term
of 3.9 can be negative. This is not a problem in life-cycle models without health, but here it
could have the perverse effect of causing individuals to value behaviors that lower H so as
to reduce the survival probability. Introducing a dis-utility of death avoids this problem.

3.8 Individual’s Problem
3.8.1 Working Age Individuals

At the start of each period, an agent’s state includes his age, education, fixed productivity
type, human capital derived from work experience, functional health, health risk, assets, DI
eligibility, and the employment offer. Letting � denote the state vector we have:

� = (t, educ,, HCt, Ht, Rt, At, I
DI

t
, (W ⇤

t
, h⇤

t
, ins⇤

t
)) (3.11)

Given �, an agent decides whether to accept or reject the employment offer, so as to
maximize the expected present value of lifetime utility. This decision is summarized by the
indicator function Iw. After the labor supply decision is made, health shocks are realized.
Then the agent draws medical expenses, including the shock "ME that determines if expenses
are “catastrophic.” The agent experiences sick days given by the function sd(educ,Ht,⌥t).
At this stage, the state of the agent is summarized by �, Iw, the vector of health shocks
⌥ = (dp, du, s), and "ME. Finally, he makes the consumption/savings decision.

The agent solves the problem in two stages. First, he solves for the policy function for
consumption conditional on � and all possible realizations of ⌥ , and "ME, for both Iw = 0
and Iw = 1. This policy function c(�, Iw,⌥, "ME) is the solution to the problem:

G(�, Iw,⌥, "
ME) = max

c

{u(c, l) + �E V (�0)} (3.12)

where the expected value of the next period’s state is calculated over the probabilities of all
possible realizations of  ⌘ (O⇤0 , H 0, R0, IDI

0
, "HC

0
, "W

0
), which uniquely determine W ⇤0 , and

where the maximization is subject to equations 3.5 to 3.10 and:

A0 = (1 + r)A+ Iw(W
⇤h� pEIins⇤) + tr � (1 + ⌧ c)c

�ME(H,⌥, t, "ME)(1� qEIIwins
⇤)� Tax (3.13)

c  1

1 + ⌧ c
[(1 + r)A+ Iw(W

⇤h� pEIins⇤) + tr

�ME(H,⌥, t, "ME)(1� qEIIw)� Tax] (3.14)

Equation 3.14 is the no-borrowing constraint. After solving for the policy functions, the
agent chooses whether to accept or reject the employment offer by solving:

V (�) = max
Iw

E(⌥,"ME)

�
'G(�, Iw,⌥, "

ME)
 
. (3.15)

Here the expectation is taken over the probabilities of all possible ⌥ and "ME. The survival
probability ' = '(Ht, t, d

p

t , d
u

t
) was defined in Section 3.2.
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3.8.2 Retired Individuals

After age 65, when retirement occurs exogenously, consumption is the only choice vari-
able. At the time consumption decisions are made, the state of an agent is given by age,
education, health, health risk factors, assets, health shocks and medical expense shocks.18

The agent maximizes the expected present value of lifetime utility by solving the problem:

V (t, educ,H,R,A,⌥, "ME) = max
c

�
u(c) + �E'V

�
t+ 1, educ,H 0, R0, A0,⌥ 0, "ME 0� (3.16)

subject to equations 3.5 to 3.10 and:

A0 = (1 + r)A+ SS + tr � (1 + ⌧ c)c�ME(H,⌥, t, "ME)(1� qMed)� pMed � T (y) (3.17)

c  1

1 + ⌧ c
[(1 + r)A+ SS + tr �ME(H,⌥, t, "ME)(1� qMed)� pMed � T (y)] (3.18)

The solution algorithm is described in Appendix A.

4 Data and Variable Construction
Our main data set is the Medical Expenditure Panel Survey (MEPS), a rotating panel

in which each household is interviewed 5 times over two and a half years. A new panel is
sampled every year. We use panels 5 to 16 covering years 2000 to 2012. Panels 1-4 are not
used because some key variables are not available before 2000. Our sample consists of males
25 years of age and older as of the beginning of the survey. We also use the CPS, HRS, PSID
and CEX to construct other statistics used in the analysis.

4.1 Constructing Health Shocks (dp, du and s)
An important advantage of MEPS over other panel surveys is that it contains information

on respondents’ detailed medical conditions. The medical conditions and procedures reported
by respondents were recorded by interviewers as verbatim text which was then coded by
professional coders into three digit ICD-9 codes.19 The high level of detail in the classification
of conditions allows us to distinguish the different types of health shocks in our model.

We categorize each of the 989 3-digit ICD-9 medical conditions based on four criteria:
1) effect on productivity, 2) persistence, 3) predictive power, and 4) predictability.20 Pro-
ductivity loss includes both productivity at work and limitations in daily functioning. We
define a medical condition as causing a long-term productivity loss if it has an impact on
productivity for at least 2 weeks per year for more than two years. We define a condition as

18Regarding the three components of human capital that affect offer wages – education, productivity type
, and human capital derived from work experience HC – it is worth noting that  and HC no longer enter
the state because the agent no longer works. But education still matters because it affects health transitions
and the distribution of predictable health shocks.

19The International Statistical Classification of Diseases and Related Health Problems (abbreviated ICD)
is published by the World Health Organization and is used world-wide for morbidity and mortality statistics,
reimbursement systems and automated decision support in medicine.

20We are grateful to Dr. Phil Haywood, a clinician and research fellow at the Centre of Health Economic
Research and Evaluation at University of Technology Sydney, who classified ICD codes based on our criteria.
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causing a short-term productivity loss if it has an impact for at least 2 weeks per year but
for less than two years. If a condition causes a productivity loss for less than two weeks,
we ignore it. The two week minimum is meant to rule out short-run minor illnesses like the
common cold. A medical condition is classified as a predictor if it increases the probability of
other medical conditions arising in the future. Finally, a condition is classified as predictable
if health related behavior and prior health conditions are together implicated in at least 50%
of its occurrences. We give more details in Appendix B.

Table 2 shows how we map ICD-9 conditions that satisfy different combinations of these
four criteria into the dp, du, and s shocks. Conditions with no effect on current productivity
are not classified as health shocks, but they may be risk factors (see below). Conditions with
both current and long-term effects are classified as dp shocks if predictable, and du shocks
if not. Conditions with only short-term effects are labeled s shocks. We define dpt , dut , and
st as 1/0 indicators of whether a respondent has one or more conditions of each type. They
are constructed at the annual level, based on the the two years of interviews in each panel.

Table 2 also reports the number of ICD-9 codes in each category. A total of 65 conditions
are classified dp, while 290 are du and 315 are s. Note that only 9 short-term conditions are
classified as predictable, and in our sample their combined prevalence is only 0.5%. Rather
than have a separate category for such rare shocks, we include them as part of s. We also
include the “unknown” conditions as part of s, because, as we show in Appendix B, they
have characteristics similar to the short-term unpredictable health shocks.

4.2 Constructing Health (H)
Our functional health measure (H) combines self-reports and objective measures. Specif-

ically, it is constructed from the following MEPS variables: 1) self-reported health, 2) self-
reported mental health, 3) activities of daily living (ADL) limitations, 4) instrumental activi-
ties of daily living (IADL) limitations, and 5) a set of eight physical functioning limitations.21

Self-reported health and mental health take values from 1 to 5 indicating poor, fair, good,
very good and excellent. The ADL and IADL variables are binary indicators for the presence
of any limitations. We construct a score for physical functioning limitations from the eight
categorical variables. All five variables are standardized using data on all men 25 and over.

We conduct factor analysis on these five standardized variables. The results are reported
in Appendix B. All five variables load highly on the first factor, which we interpret as
functional health. We use the factor scores to construct functional health for all individuals
in interviews 1, 3, and 5. These correspond to initial health, as well as 1 and 2 years later.

Finally, as this health measure is continuous, we discretize it into three categories corre-
sponding to poor, fair and good functional health (as in the model).22 Figure 1 presents the
distribution of H by age. Of course, the fraction of people in good health declines with age.
The figure also reveals a strong positive correlation between education and good health even
at young ages. At age 25 over 80% of college types are in good health, compared to about
60% of high school types. By age 65 the divergence swells to about 60% vs. 35%.

21These measure difficulty with 1) lifting 10 pounds, 2) walking up 10 steps, 3) walking 3 blocks, 4) walking
a mile, 5) standing 20 minutes, 6) bending/stooping, 7) reaching overhead, and 8) using fingers to grasp.

22Our discretization is based on the distribution of the continuous health factor among all males aged 25
and over. Good health corresponds to values of the health factor above the median. Poor health corresponds
to values at least one standard deviation below the mean. Fair health corresponds to the interval in between.
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4.3 Constructing Asymptomatic Health Risk (R)
Table 2 also lists the criteria a medical condition must satisfy to be categorized as an

asymptomatic risk factor. These conditions do not affect current productivity but they pre-
dict future health conditions and/or long-term productivity. There are 41 ICD-9 conditions
that meet our criteria. Of these, only 28 are present in our sample. In addition, we use 8
items in the ICD-9 classification that measure family history of disease. The 36 ICD-9 codes
used in the construction of R are listed in Appendix B.

We first construct three variables that summarize these 36 conditions: 1) an indicator
for essential hypertension, which has no identifiable cause, 2) an indicator for disorders of
lipoid metabolism, e.g., high cholesterol, and 3) the count of all other ICD-9 conditions used
to construct R. Hypertension and high cholesterol are by far the most common risk factors,
which is why we group all others together. We construct a measures of excessive BMI and a
measure of low BMI. All five variables are standardized using data on all men 25 and over.

We take a weighted sum of these five variables to form a scalar measure. The weights
are based on the relative importance of each variable for predicting the health shocks dpt
(see Appendix B for details).23 We do this to construct measures of R for all individuals in
interviews 1, 3, and 5. These correspond to initial R, as well as 1 and 2 years later.

Finally, we discretize the health risk variable into three categories corresponding to low,
medium, and high risk, as in the model.24 This is done separately by education, so a fixed
fraction of individuals falls into each risk class within each education group.25 Figure 1 shows
the distribution of the final health risk variable by age. The fraction of high risk individuals
is almost zero at age 25, but grows to approximately 30% at age 65.

4.4 Reduced Form Regressions
Table 1 presents regressions of labor market outcomes on health shocks, along with

controls for lagged health and human capital, using data from the MEPS. These specifications
are consistent with Smith (1999)’s approach to estimating effects of health shocks. We find
no significant effects of health shocks on current wages, consistent with our assumption that
wages do not respond immediately. But we see significant declines in work hours and annual
earnings following all three types of shocks (dp, du, s). The finding that health has greater
short-run effects on hours than wages is consistent with our modeling assumptions. Notice
also that the estimated effects of the persistent shocks (dp and du) on hours and earnings
are several times larger than the estimated effects of transitory shocks.

5 Calibration
Our benchmark model is calibrated to features of the US economy for the period 2000

to 2010, for civilian, non-institutionalized 25+ year old males who are not in school. We
23The astute reader may notice an asymmetry: We form H by combining conditions using factor scores,

while we form R by taking a weighted sum based on predictive ability. We think this makes sense, given that
H is meant to be a scalar measure of overall health, which is the type of measure factor analysis is designed
to construct, while R plays a very different role as a best predictor of future medical conditions.

24We discretize continuous R analogously to how we discretized H. That is, R is “Low” if its value is below
the median, “High” if it is above the mean plus one standard deviation, and “Medium” if it falls in between.

25We do this because the role of R in the model is to predict dp shocks, and education is also a predictor.

15



estimate some parameters directly from the MEPS data, while calibrating others (i) to match
moments of the data, or (ii) based on prior work. Most parameters are calibrated separately
for the three education groups (high school, some college, college).

5.1 Parameters Estimated from the MEPS Data
5.1.1 Transition Probabilities: Functional Health and Health Risk

As H and R are discretized into 3 levels, we specify their laws of motion as multinomial
logits. Recall we have ⇤H(H 0, H, t, dp, du, O, educ, inc) and ⇤R(R0, R, t, dp, du, H,O, educ, inc).
We estimate separate models for the 25-64 and 65+ populations. This is because O and inc
are irrelevant for the latter, as we assume everyone retires at 65 and is covered by Medicare.
The estimates are reported in Appendix B.26

Our logit specification for health transitions implies the existence of “idiosyncratic” health
shocks that cause H and R to change from t to t+1 for reasons not captured by the observed
health shocks or other state variables that enter ⇤H(.) and ⇤R(.). This “idiosyncratic” health
risk is accounted for by agents when they solve the problem in Section 3.8. However, as these
logit errors are not revealed until time t+ 1, they cannot directly affect time t decisions.

It is internally consistent to estimate the law of motion for health separately from our
structural labor supply model if the errors in the H equation are independent of other sources
of error in the structural model. That is true, given our assumption that the errors in the
logit model ⇤H(.) capture purely “idiosyncratic” health shocks, revealed after time t decisions
are made. Then, the covariates in the H equation are exogenous. We argue this assumption
is plausible given our rich controls for current health shocks and lagged health. In contrast,
a failure to adequately control for time t health shocks may render O and inc endogenous in
the H equation, as the omitted current health shocks could affect time t labor supply as well
as H transitions. This illustrates why it is important to use the MEPS data to construct
rich measures of health and health shocks. (A similar argument applies to the R equation,
but we exclude O and inc from that equation as they were not significant).

Figure 1 shows distributions of predicted vs. actual H and R by age. Our models capture
well the pattern that the prevalence of fair/poor health H both starts higher (at age 25)
and increases much more quickly with age for less educated workers. In contrast, the rate of
increase in risk factors R with age is similar for all education groups.

The left panel of Figure 2 shows how transition rates from fair-to-poor health vary by
age and employment status for high school types with a du shock. The right panel shows
the transition rate is small but positive even with no observed health shocks. This reflects
the purely “idiosyncratic" health risk captured by the logit errors, as well as natural effects
of aging. As expected, we see that the fair-to-poor transition rate increases substantially if
a du shock occurs. Clearly, our measures of persistent health shocks are strong predictors of
health transitions. Both panels show the transition rate increases if a person is not employed.
In contrast, we find that R transitions are strongly predicted by lagged R, du and dp shocks,
but not by employment status or income.

26We find that income and employment do not significantly affect the transitions for R, so in practice the
R transitions entered in the model are independent of income and employment.
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5.1.2 Probabilities of Health Shocks (dp, du, and s)

The stochastic processes for the three types of health shock �dp(R,H, t, educ), �du(t),
and �s(t) are specified as logits. The estimation results are reported in Appendix B.

Figure 3 shows that the frequency of unpredictable health shocks (du, s) increases rapidly
with age, but it does not differ by education level (see Appendix B). In contrast, predictable
health shocks (dp) are more likely for men with less education, particularly at older ages.

5.1.3 Survival Probabilities

We specify the annual survival probability '(Ht, t, d
p

t , d
u

t
) as a logit (see Appendix B).

Consistent with Pijoan-Mas and Ríos-Rull (2014), we find mortality does not depend on
income or education once we condition on health. Nor is it significantly affected by temporary
shocks s or health risk R. Of course, R affects mortality through its affect on H and dp.

5.1.4 Medical Expenditures

We use MEPS data on total annual medical expenditures to construct the expenditure
function ME(Ht,⌥t, t, "ME), where ⌥ = (dp, du, s).27 For each (Ht,⌥t, t) cell, we take the
95th percentile as the cutoff between regular and catastrophic expenditures. We then calcu-
late mean medical expenditures for men below and above the 95th percentile in each cell. In
order to obtain smooth age profiles, we run regressions of these mean values on age and age
squared (see Appendix B) and use the fitted values to construct ME(.). Consistent with
this, we set the probability of catastrophic expenditures in each (Ht,⌥t, t) state, �, to 5.0%.

It is well known that MEPS tends to underestimate aggregate medical expenditures
(Pashchenko and Porapakkarm (2017), De Nardi et al. (2017)). Therefore, we follow De Nardi
et al. (2017) and multiply the estimated medical expenses by 1.60 for men under 65, and by
1.90 for men 65 or older. This brings aggregate medical expenses computed from the MEPS
in line with statistics in the National Health Expenditure Account (NHEA).

5.1.5 Hours Worked and Sick Days

We set hours in full and part-time employment offers, hrsFT and hrsPT , to 40 and 20
per week, respectively. These values are equal to median full and part-time hours of workers
in good health with no health shocks in the MEPS.28

Next, we estimate sick days as the difference in annual hours worked between workers
with no health shocks and those with various combinations of health shocks. Specifically, to
estimate the function for sick days sd(educ,Ht,⌥t) we run regressions of weekly hours worked
on age, age2, and all possible combinations of health shocks ⌥ = (dp, du, s), separately by
health H and education group. We report the results in Table 3.

Table 3 reveals that the long-term shocks dp and du generate substantial losses of work
hours. For example, for workers in fair health, and with college or some college education,
a dp shock reduces work hours by about 2.6 hours per week (or about 135 annually). Hours

27Total medical expenditures in MEPS are defined as the sum of direct payments for health care services
provided during the year, including out-of-pocket payments and payments by private insurance, Medicaid,
Medicare, and other sources. Payments for over-the-counter drugs are not included.

28According to our definitions, “not employed” means annual hours worked less than 520, “part-time”
means annual hours between 520 and 1,500, and “full-time” means annual hours of 1,500+.
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lost are much greater if multiple shocks occur together. For example, for workers in fair
health, and with college or some college education, the joint occurrence of dp and du shocks
reduces work hours by about 7.3 hours per week (or about 380 annually).

5.2 Calibration of Remaining Parameters
We take several parameters from prior literature. These include utility function param-

eters, and parameters related to taxes, social security and health insurance. The values are
listed in Table 4. The coefficient of relative risk aversion � is set to 2.0, a widely used value.
We take the progressive tax function parameters a0 and a1 from Gouveia and Strauss (1994).
We take mean SS benefit levels (by education) from the HRS. The ESHI and Medicare cov-
erage rates are set to 70% and 50% of medical expenditures, respectively, consistent with
Attanasio et al. (2010) and Pashchenko and Porapakkarm (2017).

Table 5 lists all calibrated parameters and key moments we target for each. Of course,
all calibrated model parameters affect all moments, but some parameters are relatively more
important for particular moments. We now discuss identification of each parameter:

5.2.1 Time Discounting

We calibrate the discount factor �(educ) to match the average asset to income ratio
observed in the PSID data for working age individuals aged 30 to 55, by education. As we
see in the first row of Table 5, the college types are more patient.

5.2.2 Dis-utility of Work

The leisure cost of work �(educ,H, h⇤) is calibrated by targeting the shares of 30-50 year
old men working full and part-time in the MEPS, by age, education, and health (H). To
eliminate the effect of sick days on hours we look at these statistics only for those without
health shocks. The calibrated taste for work parameters are near the top of Table 5. Interest-
ingly, they differ modestly by education/health, implying that differences in employment by
education/health are mostly explained by differences in productivity and offer probabilities.

5.2.3 Employment Offer Probabilities

We calibrate job offer probabilities ⇧(O⇤, educ, t) to target the shares of men employed
full and part-time in the CPS, with and without insurance, conditional on education. The
calibrated job offer probabilities are presented in Table 6. Clearly, the probability of receiving
a full-time offer with health insurance is strongly increasing in education.

We assume men aged 25-53 always get a job offer, so all unemployment is voluntary.29

At ages 54+, we allow for the possibility of receiving no offer, to better match the decline in
labor force participation at later ages. We let the no-offer probability follow a linear trend
in age, with a notch at 60, and parameters that differ by education.30 In Table 5 we see the
probability of receiving no offer increases more rapidly with age for the less educated.

29Of course, some transitions from employment to non-employment before age 54 are due to involuntary
separations. Our model captures this implicitly through the possibility of poor wage draws.

30Specifically, ⇧(O⇤, educ, t) = �O(educ, t)(t � 29) for t > 29 and O⇤ = 1 (no offer). Note that t = 30
corresponds to age 54. We let �O(educ, t) increase at t = 35, which is age 60.
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5.2.4 Identification of the Offer Wage Function

In the data, we only observe wages of agents who choose to work. So estimates of the
wage offer function would be subject to selection bias if estimated directly from observed
wage data in a first stage.31 Instead, we implement a selection correction by simulating data
from the model, calculating the distribution of accepted wages among men who choose to
work, and iterating on the model parameters until the mean of simulated accepted wages
matches as closely as possible the mean of accepted wages in the data (conditional on age,
health status, full and part-time status, and education).

If we interpret our structure as a complex selection model (Heckman (1974)), then identi-
fication (aside from functional form) relies on exclusions that Rt, At, IDI

t
, and ins⇤

t
enter the

decision rule for work, but do not affect offer wages. Conversely, identification of preference
parameters relies on the exclusion that HC affects wage offers but not preferences.

We also calibrate parameters that determine higher moments of wages. These are: (1)
the mass points of the latent productivity types j(educ) within each education type, (2) the
variance of the transitory wage shocks �2

"W
(educ), (3) the variance of measurement error in

log wages, �2
N
(educ),32 and (4) the parameters that characterize the human capital shocks

(⌫, p1(educ, Iht>0), and p2(educ, Iht>0)) in equation 3.2.
To identify these parameters, we target: (i) the variance of log wages by education, (ii)

the serial correlation of wage residuals, and (iii) annual transition rates from employment to
non-employment for individuals in good health.33 Measurement error affects targets (i)-(ii)
but does not affect transition rates (iii), distinguishing it from true wage shocks. This lets
us separately identify the true wage variance from the measurement error variance.

To construct residual wages, we regress wages on a cubic in age, separately by education.
Then, as in indirect inference, we use residual wages from both simulated and real data
to estimate a random effects plus AR(1) process, which we view as a descriptive model of
the wage process. We adjust parameters of our structural model to fit three aspects of the
descriptive model: the random effect and innovation variances, and the AR(1) parameter.

To calibrate the parameters of the human capital shock process in 3.2, we fix the incre-
ment ⌫ to 0.3 and calibrate the probabilities of positive and negative shocks. For employed
workers, we assume these probabilities are equal (p = p1 = p2). Higher values of p gener-
ate more dispersion in wages and higher transition rates between employment states. For
the unemployed, we assume that only negative human capital shocks are possible (p1 = 0),
so we only calibrate p2. A higher p2 during non-employment periods implies more wage
depreciation and a lower transition rate from non-employment to employment.

Finally, we allow for two productivity types () in the “college” and “some college” groups,
and three in the “high school” group (which is more diverse as it includes dropouts). Within
education groups, all productivity types are equal in size. They cover a range of roughly
+0.30 sd. All calibrated wage process parameters are shown in the second panel of Table 5.

31It is useful to compare the logic here, as to why the wage equation must be estimated simultaneously
with the full structural model, with our previous argument in Section 5.1.1 that it is consistent with the
internal logic of our model to estimate the health transition process separately in a first stage.

32It is well-known that wage data contain measurement error. We assume observed log wages include
additive measurement error "N ⇠ N(0,�2

N (educ)), which we include when we simulate observed wages.
33Transitions are also induced by health shocks, so to identify effects of wage shocks we target only

transition rates for workers in good health in consecutive periods.
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5.2.5 Consumption Floor, Disability Benefits, Dis-utility of Death, Taxes

We calibrate the consumption floor to match the percent of working age men who receive
non-DI government transfers (conditional on education). We calibrate disability benefits (i.e,
the higher consumption floor for DI recipients) to match average DI benefits in the CPS. We
estimate DI benefits to be $10,400, $14,040 and $17,160 for the HS, some college and College
types, respectively. The DI benefit levels are roughly double the basic (non-DI) floors.

Working age men in poor health are eligible for DI benefits with a positive probability
⌘(educ,H, t). Because we model DI as a higher consumption floor, only those who qualify
for the floor c̄(educ, IDI) in the first place have the possibility of getting DI benefits. We
calibrate ⌘ so the model matches the fraction of working age men who are DI recipients in
the CPS.34 We define DI benefits as including SSDI, SSI, and workers’ compensation.

We set the utility cost of death ⇣ to equal the present value at age 25 of discounted future
utility evaluated at the minimum consumption floor and a level of leisure associated with
full-time employment in poor health, for those with high school or less. This ensures that
all individuals prefer to live in all possible states. The final parameter value of ⇣ = �30 is
set after calibrating the minimum consumption floor and dis-utility of work.

Finally, we calibrate the tax parameters a2 and ⌧y in equation 3.6 to match effective tax
rates by income level. Table 4 and the bottom panel of Table 5 lists calibrated values of the
tax/transfer rule parameters discussed in this section.

6 Model Fit
A key feature of our model is that workers receive tied wage/hours/insurance offers.

Table 6 reports on the model fit to the proportions of workers employed full and part-
time with and without employer sponsored health insurance. The model captures well the
pattern that more educated workers are more likely to receive full-time offers that include
health insurance. For example, at ages 35-44, the model predicts that 82.4% of college types
have full-time jobs with insurance, compared to only 56.8% of high school types, and these
fractions align well with the data frequencies (82.3% and 59.7%).

Table 6 also shows that the model captures well the rapid declines in employment as
workers approach age 65.35 Less educated workers tend to stop working sooner, both in the
model and the data. An important consequence is that only one-third of high school types
have full-time jobs with insurance at ages 55-64.

Our model fits patterns of full and part-time employment by age and education very
well, as we see in Figure 4. An exception is that part-time employment rises a bit as workers
approach age 65, but the model does not generate this.

Figure 5 shows life-cycle paths of full-time employment, conditional on education and
health. Clearly, both higher education and better health generate more full-time employ-
ment, and our model captures these features of the data well. The low full-time employment

34Assuming all DI recipients are in poor functional health, we can back out the percent of working age
men who receive DI conditional on poor H.

35Recall that, starting at age 54, we assume a positive probability of receiving no job offer. This captures a
number of reasons firms may be reluctant to hire older workers. For example, a match with an older worker
is less valuable as it is likely to last for a shorter period of time. There may also be age discrimination.
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rate of workers in poor health is striking. It hovers around 40% regardless of age/education.
As we saw in Table 5, tastes for work only differ modestly by health in our calibration, and
offer probabilities do not depend on health. So our model implies the low employment rate
of workers in poor health is mostly due to low wage offers. This interacts in an important
way with the consumption floor and disability insurance, as we will show in Section 7.36

Next, in Table 8, we show the model’s fit to many of the key data moments that we listed
in Table 5. The model gives a very good fit to asset/income ratios, which are higher for
the college types. The second panel of Table 8 shows how the model fits full and part-time
employment rates, conditional on education and health. The fit is generally very good. We
are less accurate in the case of men in poor health with no health shocks, but the data
moments are very noisy in those cells.

The third panel of Table 8 shows our fit to targeted moments of involving mean full-time
wages, conditional on education, health and age. Again the fit is quite good. Figure 6 reports
on how we fit the age profiles of wages more generally. It is evident that poor health shifts
wage profiles downward, and the model captures this well. The model also captures the fact
that wages start higher and grow faster over the life-cycle for more educated workers. The
one area where the model fails is that it systematically overestimates wages at ages 55-64.

The fourth panel of Table 8 focuses on moments involving wage variability. The model
matches moments of the stochastic process for residual wages fairly well, except that, for high
school types, it understates the variance of the permanent error component and exaggerates
that of the transitory component. Table 9 reports on how we fit quantiles of the distribution
of wages, conditional on age and education. The model’s fit to the quantiles of the wage
distribution is very impressive, except at the 99th percentile for college types.

Regarding transition rates between employment states, the model slightly understates the
transition rate from employment to unemployment, while slightly exaggerating the transition
rate from unemployment to employment (for non-college types). In reality, unemployed
workers without a college degree may not always have job offers, a possibility our model
does not capture at ages younger than 54.

The bottom panel of Table 8 shows our fit to moments that involve the consumption floor
and disability benefits. We slightly under-predict the (very high) fraction of men in poor
health who receive disability benefits. For instance, for high school types, this fraction is 80%
in the data vs. 74% in the model. We capture fairly accurately the (much smaller) fraction
of working age men who receive non-DI transfers, which is about 4% to 9% depending on
education. In our model this means these men are at the consumption floor.

Figure 9 describes the distribution of medical spending in our model vs. the MEPS data.
The model does a reasonably good job matching the extreme skewness of the expenditure
distribution (i.e., the top 1% of spenders account for 25% of total costs).

Finally, Figure 8 shows how our model fits the Gini coefficient for income by age, where
income is defined as labor earnings plus asset income. This is an untargeted moment in
estimation, yet we fit it quite well. This is critically important, as much of the next section
focuses on how health shocks (and other factors) contribute to income inequality.

In summary, the fit of the model to key aspects of the data is generally good, giving it
some credibility as a vehicle to quantify impacts of health shocks on earnings.

36As we see in Table 5, our calibration implies full-time work reduces leisure by about 52 to 55% for those
in good or fair health. This only increases substantially with poor health for the some college type.
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7 Results

7.1 Effects of Major Health Shocks on Earnings
First we use our model to simulate the impact of a major health shock on earnings. We

focus on unpredictable persistent shocks du that are serious enough to cause deterioration in
health H. For men aged 50-60 the annual frequency of du shocks is 29.0%, of which 22.0%
are severe by our definition, giving a 6.3% annual frequency of severe du shocks.37 We find
on average a cumulative (non-discounted) earnings loss of $40k over the ten years following
such a major health shock for men at age 50. We can compare our results with Smith (2004)
who estimates a cumulative income loss of $37k over ten years (1994-2003) following major
health shocks for men in the HRS. Although his definition of a major shock is narrower than
ours, it is encouraging that our estimates are in the same ballpark.38

Next we use our structural model to simulate the effect of a health shock on the present
value of remaining lifetime earnings, discounted to the age of the shock. A major health
shock directly affects earnings by generating sick days, and, more importantly because worse
health directly reduces wage offers and tastes for work (see equations 3.4 and 3.10). Hence,
a health shock reduces wage offers and labor supply.

Human capital accumulation amplifies the effect of a health shock, as the decline in
labor supply slows the accumulation of human capital, which further reduces wage offers,
generating a feedback loop. Using our structural model, we can assess the importance of
this human capital mechanism in generating the total effect of a health shock, by comparing
simulations with and without the feedback loop. To shut down the human capital feedback
loop, we run simulations where we hold the levels of the time-varying experienced-based
component of human capital (HC) entering the offer wage function 3.4 fixed at the levels
that prevailed in a baseline simulation where no major health shock occurred.

Figure 7 decomposes the effects of a health shock on wage offers: A major health shock
leads to a sharp decline in wage offers in the first year after the shock (about 15%). Over
time the effect diminishes. If we shut down the human capital feedback channel then wages
return to their baseline level after about 5 to 6 years. But if we include the human capital
feedback channel, offer wages never fully recover to their baseline levels.

Table 10 shows how major health shocks affect the present value of earnings. For example,
for a college type at age 40, a major health shock reduces the PV of remaining lifetime
earnings by $44.7k or 4.5%.39 We estimate the human capital feedback channel accounts for
40% of this effect. Notice that lifetime years of work decline by 0.93 years, but if we shut
down the human capital channel the decline is only 0.39 years.

For individuals with high school or less education at age 40, a major health shock reduces
the PV of earnings by $33.4k or 7.9%. Of this, 25% is due to the human capital channel.

37We obtain very similar results for predictable persistent shocks dp. We focus on du shocks as they are
more common. For men aged 50-60 the annual frequency of severe dp shocks is 3.2%, about half the frequency
of severe du shocks. The frequency of a severe shock of either type is 8.2%.

38 Smith (2004) looks at men in the HRS who were in roughly the 51 to 61 age range when they experienced
what he terms a major shock, which he defines as cancer, heart disease and lung disease. He reports 21.4%
of 51-61 year old men had a major health shock of this type over the first 8 years of the NHS survey.

39For men aged 40 the annual frequency of du shocks is 16.9%, of which 23.5% are severe by our definition,
giving a 4.0% annual frequency of severe du shocks. The annual frequency of severe dp shocks is only 0.9%.
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Less educated workers have less wage growth over the life-cycle, so it is unsurprising that the
human capital channel is relatively less important for them. However, their total percentage
loss is much greater, and the loss through the human capital channel still represents 2.0%
of the PV of earnings, compared to 1.8% for college workers. The direct health effect on the
PV of earnings is much greater for high school types (5.9%) than for college types (2.7%).

As we would expect, if a health shock occurs later in life the human capital channel is
less important. At age 60, the human capital channel accounts for only 4.7% of the effect on
earnings for college workers, and even less for high school types. Table 10 also reveals that
drops in earnings are much greater for college workers than less educated workers at age 60.
This is because college types are more likely to be employed after age 60.

7.2 Effects of Health Shocks on Key Outcomes
Here we examine the impact of health shocks (s, du, dp) on some key outcomes in our

baseline model. To this end, we compare simulated life-cycle histories from the baseline
model with alternative simulations in which agents are “lucky” and do not experience health
shocks. We hold the perceived risk of health shocks (i.e., the “environment”) unchanged.

In these experiments, agents’ decision rules are unchanged, and they still behave as if

they expect to draw health shocks from the distributions �dp(R,H, t, educ), �du(t), and/or
�s(t). This allows us to examine what we call “direct” effects of health shocks. Later, in
Section 7.4, we run counterfactuals where we shut down health risk, and let agents’ decision
rules adapt. That will allow us to also study “behavioral” responses to health risk.

To proceed, we run several experiments in which agents never receive s, du or dp shocks.40

Table 11 presents results for working age individuals (age 25-64), emphasizing effects on med-
ical costs, health, labor supply, wages and transfers. First consider the effect of eliminating
all three types of observed health shocks (s, du, dp). Our model predicts this would reduce
average annual medical expenditures from $4465 to $1041. Note that even people with no
health shocks have some medical expenses, due to minor illnesses that we do not classify
as shocks, chronic conditions, etc. According to our model, elimination of all health shocks
at ages 25-64 would raise the probability of survival to age 65 from 85% to 92%, increase
lifetime labor supply from 29.8 years to 32.1 years, increase the mean hourly wage offer from
$22.88 to $23.25, and reduce the fraction of men who receive government transfers (including
disability) from 12.9% to 8.9%. (Appendix A presents these results by education.)

It is also interesting to compare the impact of different types of health shocks. Our model
implies that among working age men, unpredictable shocks (s, du) have larger effects than
predictable shocks (dp). Together, eliminating s and du shocks reduces medical expenditures
by 65% and sick days by 86%. Eliminating the predictable shocks (dp) reduces them by only
14% and 25%, respectively. This is not because unpredictable shocks are more severe, but
because they are much more prevalent.41 As we see in Table 11, life expectancy, labor supply
and wage offers all increase more in the absence of unpredictable shocks.

40As we discussed in Section 5.1.1, our logit model for health transitions implies the existence of “idiosyn-
cratic” health shocks that cause H and R to change from one year to the next for reasons not attributable
to the observed health shocks (s, du, dp) or other state variables. Here we focus entirely on the effects of the
observed health shocks (s, du, dp) that we can identify and categorize.

41The most prevalent shocks are transitory s shocks (39% of working age individuals experience these each
year), followed by du (21%) and lastly by dp (13% for HS, 12% for Some College, and 8% for College).
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We also assess the importance of asymptomatic health risk R. Specifically, we run an
experiment where we give all agents a low risk level initially (at age 25), and shut down
transitions to higher levels of R. Agents’ decision rules are again held fixed. Thus, all
changes in outcomes arise solely due to “luck” rather than changes in decision rules.

We find that giving all individuals low health risk has fairly small effects. The probability
of having a dp shock falls by 41%. However, as only about 11% of working age men experience
dp shocks, the overall benefit of reducing R is modest. In the bottom row of Table 11, we see
that average medical expenditures decrease by only 5.6% and the fraction of those relying
on social insurance decreases by only 5.8%. The fraction of men in good functional health
would increase by only 1.2 percentage points. In general, most health shocks that occur at
working ages are unrelated to R, so reducing health risk has fairly small effects.

These findings suggest a limited potential impact of policies aimed at reducing risk factors
like high blood pressure, cholesterol and obesity, as they are not likely to have large effects
on health or labor market outcomes for the working age population. Of course, the potential
benefits of reducing health risk are greater at ages over 65, when predictable shocks such as
heart attack become more prevalent.

7.3 Decomposing Sources of Earnings Inequality
Next we use our model to estimate the fraction of variance (across people) in the present

value of lifetime earnings (PVE) that is explained by initial conditions and health shocks.
We generate simulated life-cycle histories from the benchmark model, and calculate the PVE
discounted to age 25 for each simulated agent. Then, similar to Keane and Wolpin (1997), we
run regressions of the PVEs on initial conditions (i.e., education, skill type, initial health).
But we also include measures of health shocks that occur at ages 25-64.

Table 12 presents the R2 values from alternative specifications of these regressions, both
run separately by education and for all groups combined. First we focus on the combined
results. Similar to results in Keane and Wolpin (1997), we find that a substantial 86.8%
of the variance in the PVE across agents can be explained by initial conditions at age 25,
primarily education and a fixed productivity type. There is only a small contribution of
initial health H and the initial risk level R, which vary little across people.

Next, we add a set of variables designed to capture flexibly the impact of health shocks
throughout working life. We include the number of times the agent experienced each of
the eight possible combinations of the three health shocks (s, du, dp). We enter these as
separate variables to allow the health shocks to have different effects when they occur in
combination. We also enter as separate variables the counts of health shocks that occurred
when the agent was in poor, fair, or good health. This captures the fact that health shocks
may have a larger effect if the person was in worse health to begin with. We also include
the number of years the person spent in good, fair or poor health, primarily to pick up the
effects of the “idiosyncratic” health shocks (i.e., the logit errors in the health transitions).
Finally, to control for mortality shocks, we include the number of years prior to age 65 when
the individual died, if positive. We were not able to find additional health variables that
significantly improved the fit of our PVE regression.

When we include this array of health shock measures, the R2 of our PVE regression
increases to 92.4%. Thus, initial conditions (at age 25) and health shocks together can “ex-
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plain” (or predict) 92.4% of the variance of lifetime earnings. The independent contribution
of health shocks to explaining the variance of the PVE, beyond what can be predicted based
solely on initial conditions, is 5.6%.42, 43

Finally, Table 12 row three presents regressions that only control for initial health and
the array of health shock variables, while omitting education and the skill endowment. Here,
we find that initial health and health shocks explain 40.0% of the variance in the PVE across
all agents. Almost all of this is due to the health shock variables because, as we noted earlier,
initial health at age 25 does not vary much across people.

Combining these results, we see that initial conditions independently explain 52.5% of
the variance of the PVE, while health shocks independently explain 5.6%. A substantial
34.4% of the variance is “explained” by the covariance between initial conditions and health
shocks. The covariance term is so large because of the strong negative correlation between
education/productivity and the incidence of health shocks.44

There are three basic explanations for this correlation: First, causality may run from
education to health, if more educated people are better are utilizing health improving tech-
nologies/treatments, have a better understanding of health risks, have better nutrition, etc..
Second, there may be an omitted factor that causes people to get more education and take
better care of their health - perhaps a personality trait like “good judgment” or “self con-
trol.” Third, it is possible that knowledge of one’s health transition function impacts one’s
human capital investment decisions. Thus, we cannot rule out causality running from health
outcomes to education, even if education decisions are temporally prior to those outcomes.

This discussion highlights the limitation of using a regression decomposition of variance
to assess the importance of health shocks for earnings inequality. What we can say is that,
for all workers, health shocks “explain” roughly 40.0% of the variance of the PVE, but 34.4%
of that variation is predictable based on one’s initial education and skill type. Thus, it is
not clear how much of that 34.4% is actually caused by health shocks, and, indeed, our
prior is that most of it reflects causality running from education to health, or from some
omitted third factor to both education and health. What is clear, however, is that 5.6% of
the variance of lifetime earnings is directly attributable to “luck” whereby agents with the
same initial conditions experience different incidence of health shocks.

7.4 The Role of Health Shocks in Generating Earnings Inequality
Next, we use our model to conduct counterfactual experiments that clarify how health

shocks contribute to earnings inequality. Specifically, we eliminate health shocks from the
baseline model and simulate life-cycle histories for agents in the new environment. Shutting

42We run similar regressions for the present values of utility and consumption. We find that initial
conditions explain 82% of the variance of the present value utility and 87% of the variance of the present
value of consumption. Both these figures increase to 93% when health shocks are included.

43If we look within education types, the results are very similar, except that health shocks are somewhat
more important, particularly for the less educated. Within education types, the initial conditions (primarily
the latent skill endowment) explain 79% to 86% of the variance of the PVE. The incremental contribution
of health shocks ranges from 7.0% for the some college type to 10.1% for the high school type.

44The source of the positive correlation between education and health, often called the “SES gradient,”
is of course one of the great open questions in the social sciences. See Smith (2004) for a discussion and
Heckman et al. (2018) and Hai and Heckman (2019) for recent advances in this area.
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down health shocks affects earnings inequality for three reasons: (1) it eliminates the “luck
of the draw” whereby agents with the same initial conditions (education/productivity/initial
health) experience different health shock realizations, (2) it eliminates the advantage of
better-educated workers that arises because they face more favorable probability distribu-
tions of predictable health shocks, and (3) it induces a behavioral response as agents update
their decision rules in response to the new health risk environment.45 We call effects that
arise given fixed decision rules the “direct” effects of eliminating health shocks, and effects
that arise from changing decision rules the “behavioral” response to reduced health risk.

An advantage of the counterfactual simulation approach is that we can run simulations
where we hold decision rules fixed (i.e., the same as the baseline model), just as we did in
Section 7.2. Comparing the results of such simulations with ones that also allow decision
rules to adapt enables us to isolate both the direct effect of health shocks and the behavioral
response to reducing health risk.

To proceed, Table 13 reports both means and measures of dispersion for the present
value of lifetime earnings (PVE), both in the baseline model and in counterfactuals where
we eliminate health shocks for working-age men.46 In the baseline, the mean PVE is $762k,
with a standard deviation of $422k, implying a coefficient of variation of 0.555. The great
heterogeneity of the PVE across education/productivity types, already apparent from the
regressions of Section 7.3, is clearly evident. The mean PVE ranges from only $294k for
low-skill high school types to $1, 522k for high-skill college types.

The middle columns of Table 13 show how the distribution of the PVE is altered when
we eliminate health shocks for working-age men, while holding their decision rules fixed.
The mean PVE increases by 5.6% to $805k. The coefficient of variation (CV) of the PVE
decreases 4.9% from 0.555 in the baseline to 0.528 in the experiment. And the Gini inequality
measure also decreases 4.9% from 0.304 to 0.289.

The right columns of Table 13 show how the distribution of the PVE is altered when we
also allow agents’ decision rules to adapt to the lower health risk environment. Compared to
the baseline, the mean PVE increases by 9.3% to $833k. The coefficient of variation (CV)
of the PVE decreases by 13.7% from 0.555 in the baseline to 0.479 in the experiment, and
the Gini inequality measure decreases by 15.1% from 0.304 to 0.258.

Thus, health shocks generate about 15% of inequality in present value of lifetime earnings

for men. Notably, direct effects of health shocks on health/productivity account for only about

1/3 of their impact on inequality, while behavioral responses account for 2/3.

The reason behavioral responses to health risk contribute substantially to inequality
becomes apparent if we examine how mean PVE changes for different education and pro-
ductivity types when health shocks are eliminated. We report this in the bottom panel of
Table 13. For the low-skill high school type the direct effect of eliminating health shocks
is to increase mean PVE by 12.9% (from $294k to $331k). But when we factor in their
behavioral response, mean PVE increases by 37.5% (to $404k).

45These counterfactuals differ in important ways from the regression decompositions of variance reported
in Section 7.3. The regressions do not capture channel (3), the behavioral response to reduced risk. They
only capture the impact of different incidence of health shocks (due to “luck”) in a fixed risk environment.

46Eliminated health shocks for men aged 65+ leads to an increase in average lifespans of 10 years, drastically
changing the savings needs for retirement, and affecting savings and labor supply decisions. On the other
hand, eliminating shocks only at working ages leads to an increase in average lifespans of only 1.5 years.
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The large behavioral effect of health risk on earnings arises because, in the baseline model,
low-skill high school types have a strong incentive to hold down their labor supply and human
capital accumulation so as to maintain eligibility for social insurance that cushions against
high medical costs. In fact, as we see in Table 16, eliminating health shocks increases the
employment rate for low-skill high school types from 57.1% to 84.3%, and reduces the fraction
who receive social transfers from 42% to 9%. As we report in Appendix Table A4, only ten
points of that decline is due to health shocks per se, while 24 points is due to the behavioral
response. Thus, in an environment with costly health shocks, social insurance creates a type
of “moral hazard” that reduces labor supply and human capital investment (analogous to
how health insurance generates moral hazard by reducing the incentive to invest in health).

Next, consider the effects of health shocks on the medium and high productivity types
within the high school group. For them, the direct effects of eliminating health shocks are
to increase mean PVE by 7.1% and 5.5% respectively, but the additional behavioral effects
are trivial. Thus, among the medium and high skill types, social insurance has no significant
moral hazard effect on labor supply and human capital investment.

The same pattern holds within the some college and college groups: For low skill types
there is a large behavioral effect of health shocks on mean PVE, while for high skill types the
behavioral effects are very small. In fact, within all three education groups, the behavioral
effect of eliminating health shocks is to slightly reduce PVE for the high skill type. These
agents are unlikely to use transfers to help pay medical costs, and they instead self-insure.
Removing health shock risk reduces the need for precautionary savings, slightly reducing the
incentive to supply labor. For instance, in Table 16 we see the employment rate of high skill
college types declines slightly from 93.7% to 92.6% when health shocks are eliminated.

To compare how different types of health shocks affect earnings and earnings inequality,
we run simulations where we eliminate one type of shock at a time, either s, du or dp, allowing
decision rules to adjust. In Table 14 we see unpredictable persistent shocks (du) have the
greatest influence: Their elimination increases the present value of lifetime earnings by 6.6%,
and reduces the Gini inequality measure from .304 to .269. Transitory shocks have a smaller
effect, despite being much more common, precisely because they are transitory. Predictable
persistent shocks (dp) have the smallest impact. This is primarily because, as we see in
Figure 3, the dp shocks are less common than du shocks, especially for college types.

Table 14 also reveals that the relative impact of predictable persistent shocks (dp) on the
PVE for high school workers (+2.9%) is greater than for college workers (+3.4%). This may
seem surprising, as high school workers have more dp shocks than college workers (see Figure
3). The explanation is that predictable persistent shocks (dp) tend to happen later in life,
and college workers are more likely to be working later on life.

7.4.1 The Role of Medical Cost Shocks

Next, we consider simulations where, instead of eliminating health shocks, we eliminate
only the medical expenses created by those shocks.47 This allows us to disentangle effects of
health shocks operating through their impact on health and productivity vs. effects operating
through their impact on the lifetime budget constraint.

47This is a partial equilibrium experiment where we insure all health care costs, but we do not finance the
program by raising taxes. It is only meant to clarify how health care costs affect behavior. Later, in Section
7.7 we consider experiments where we introduce health insurance financed by premiums and/or taxes.
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Table 15 reports our results. The middle columns show how the distribution of the PVE
is altered when we eliminate the medical costs of health shocks for working-age men, while
holding their decision rules fixed. Notice that the effects on both mean PVE and measures
of inequality are trivial, and this is true for all education/productivity types.

The right columns of Table 15 show how the distribution of the PVE is altered when we
also allow agents’ decision rules to adapt to the lower medical cost risk environment. Com-
pared to the baseline, across all agents, the mean PVE increases by 2.5% to $781k, and the
Gini measure of inequality drops by 8.6% to 0.278. This masks substantially heterogeneity
across types: The mean PVEs of low-skill types within the high school, some college and
college types increase by 16.3%, 8.9% and 9.2% respectively. And inequality measures drop
by about 1/4 to 1/3 within the low productivity types. In contrast, the behavioral responses
among high-productivity types are trivial within all education groups.

These results highlight the strong impact of health care costs on the behavior of the low
productivity types. According to our model, they have strong incentives to reduce labor
supply and invest less in human capital so as to maintain eligibility for social insurance that
protects them from high medical costs. In fact, as we see in Table 16, the employment
rate of the low-skill high school type increases from 57.1% to 71.7% when the cost of health
shocks is eliminated. The increases in employment for the low productivity types within the
college and some college groups are substantial as well. Reliance on social insurance declines
dramatically for almost all groups, but the largest absolute decline is observed for the low
productivity high school type, for whom receipt of transfers drop from 42% to 22%.

7.4.2 Effects of Health Shocks on Income Inequality over the Life Cycle

Next we examine how income inequality varies over the life-cycle. Figure 10 plots the
Gini coefficient for cross sections of agents at each age from 25 to 64. Recall from Figure 8
that our model fits the life cycle pattern of income inequality very well. In both the model
and the data, cross-sectional income inequality increases as people age. The increase is very
gradual in the 40s, but accelerates for agents in their 50s and 60s. Much of the increase at
later ages is driven by retirement behavior, but much is also due to health shocks.48

Consider the experiment where we eliminate health shocks, and allow agents to update
decision rules. As we see in Figure 10, this causes income inequality to drop at all ages, but
the drop is much greater for workers in their 50s and 60s. For example, at age 55 the Gini
drops substantially by .11 points (from .46 to .35), while at age 40 it only drops by .03 (from
.34 to .31). Half the drop (even more at younger ages) arises from the behavioral effect.

It is interesting to contrast the .11 point drop in the Gini at age 55 with the .046 point
drop (from .304 to .258) that we saw in Table 13 for the present value of lifetime earnings
evaluated at age 25. The drop in the Gini of the present value at age 25 is relatively modest
because later ages, where health shocks are more influential, are discounted in the present
value calculation. There is no inconsistency in finding that health shocks can explain about
a quarter of income inequality for people in their 50s and 60s and our earlier finding that
health shocks only explain about 15% of PVE inequality at age 25.

48The model generates a jump in income inequality at age 60 because the probability of receiving no job
offer jumps at 60. Figure 4 shows how the model also generates a drop in full-time employment at 60.
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7.5 Direct and Behavioral Effects of Health Shocks
In the previous section we explored how health shocks contribute to earnings inequality.

In this section we explore how health shocks affect a range of behaviors and outcomes includ-
ing health itself, work experience, wage offers, and reliance on social transfers and disability
benefits. This clarifies the channels through which health shocks affect earnings.

To disentangle direct and behavioral effects of health shocks, we compare results from
three experiments: (1) eliminate health shocks but hold labor supply and savings fixed, (2)
eliminate health shocks but hold decision rules fixed (allowing labor supply and savings to
change according to the optimal policy functions of the benchmark environment), and (3)
eliminate health shocks and allow agents to update their optimal decision rules. As we
explained in Section 7.4, the first two simulations capture the direct effects of health shocks,
while the latter experiment incorporates the behavioral response to reduced health risk.49

7.5.1 Effects of Health Shocks on Health

Figure 11 shows how the evolution of health itself (H) is altered in counterfactuals where
we shut down health shocks for working age men. The figure reports the fraction of men
in fair and poor health in the baseline model and in the three counterfactual simulations
described above. We label these “No Shocks 1,” “No Shocks 2,” and “No Shocks 3.”

Not surprisingly, the direct effect of eliminating health shocks (without any decisions
changing) is to improve health substantially (as health shocks are key drivers of H and R
transitions). For example, the fraction of men in poor or fair health at age 64 drops from
.56 in the baseline to only .42 in the absence of health shocks. This improvement in health
leads to higher wage offers, higher employment and higher incomes. These in turn have an
additional positive reinforcement effect on H as seen in experiments (2) and (3).

However, Figure 11 reveals these reinforcement effects are modest: the fraction of men
in poor or fair health at age 64 drops by only an additional .01 under “No Shocks 2” and an
additional .01 when decision rules are allowed to adapt (“No Shocks 3”). Thus, the bulk of
the inequality in H generated by health shocks is accounted for by the immediate effect of
health shocks on H, not reinforcement effects operating through employment and income.

7.5.2 Effects on Employment, Human Capital and Wage Offers

Figure 12 plots the mean and coefficient of variation of experience, human capital, and
wage offers from the same set of three experiments. In the first experiment experience and
human capital remain unchanged from the benchmark, because we hold labor supply fixed.
But offer wages can change, because they depend on H. Thus, the first experiment shows
only the direct effect of health shocks on wages through their direct impact on H.

As we see in the third panel of Figure 12, the direct effect of health shocks on wages
(operating through H itself) is very modest. Only when workers reach their 50s and 60s
does it start to become a non-negligible factor. For example, the mean offer wage of 50 year
old workers only increases from $25.0 to $25.2 per hour if health shocks are eliminated, but
that of 60 year old workers increases from $25.5 to $25.9.

49Experiments (1) and (2) can be interpreted as a situation where all agents are “lucky” and experience
no health shocks, but where the perceived probabilities of health shocks are unchanged (at baseline levels).
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In the second experiment we let elimination of health shocks alter labor supply decisions
and employment. We still call this a “direct” effect because decision rules are held fixed, but
it includes the reinforcement effect that arises because increased employment and income
further improve health and increase human capital.50 In this experiment work hours increase
both because sick days are eliminated and because improved health leads to higher wage
offers, which increases labor supply. As we saw earlier in Table 11, the elimination of health
shocks causes lifetime work experience to increase by 2.3 full-time equivalent years. However,
as we now see in the top two panels of Figure 12, impacts on accumulated work experience
and human capital are very modest until workers are in their 50s and 60s.

When we account for how eliminating health shocks alters the accumulation of work
experience and human capital, the implied effect on offer wages roughly doubles. Now, as
we see in the third panel of Figure 12, the mean offer wage of 50 year old workers increases
from $25.0 to $25.4 per hour, while that of 60 year olds increases from $25.5 to $26.3.

Finally, in the third experiment we let agents’ decision rules for labor supply and saving
adapt to the reduced risk environment. As we see in Table 17, elimination of health shocks
causes lifetime full-time equivalent work to increase by 4.5 years (or 15%). This is almost
double the increase of 2.3 years that we found from the direct effects of health shocks (holding
decision rules fixed). Once all three channels of effects are factored in, the mean offer wage of
50 year old workers increases from $25.0 to $25.9 per hour when health shocks are eliminated,
while that of 60 year olds increases from $25.5 to $26.8.

It is worth emphasizing that the reduced form studies reviewed in Section 2 do not
attempt to capture behavioral effects of health risk on employment and wages. They estimate
only what we call the “direct” effects of differential incidence of health shocks (i.e., “luck”)
within a given risk environment (with fixed decision rules). But we find that the behavioral
effects on employment and wages are as large as the direct effects.

Inequality in work experience drops very sharply when we allow decision rules to adapt to
the lower risk environment (see the top right panel of Figure 12). This is primarily because
labor supply of low-skill workers increases sharply when health shocks are eliminated, as they
no longer have an incentive to constrain their labor supply and human capital accumulation
to maintain eligibility for social insurance that protects them from high medical costs. For
example, in Table 17, note that lifetime full-time equivalent work increases from 19.9 to 31.1
years for low-skill high school types. As we see in the bottom panel of Figure 12, the drop
in inequality in work experience translates into a sharp drop in inequality in wage offers.

Eliminating health shocks only has large direct effects on hours at older ages, but it has
a substantial positive behavioral effect on hours of low-skill workers even at young ages. As
a result, the behavioral response generates noticeable increases in mean offer wages, and
declines in wage inequality, at much younger ages than implied by direct effects alone.

As a summary of how health shocks affect wage inequality through the three channels,
note that the coefficient of variation of wage offers at ages 50 (60) declines by 0.9% (1.7%)
in the first experiment due to changes in H, by an additional 1.6% (2.0%) in the second
experiment due to less dispersion in human capital, and by an additional 3.8% (4.3%) in the
third experiment due to the behavioral response to reduced health risk. Thus, the behavioral

50In contrast to our model De Nardi et al. (2017) introduce heterogeneity by having different health types
within each education group. Then, the poor health types tend to spend longer periods in poor health states
and non-employment, but there is no feedback effect of employment or income on health.
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response to health risk accounts for the bulk of the effect of health shocks on wage inequality.
Next, we examine how health shocks affect wage offers for different education groups.

Figure 13 plots age profiles of the mean and coefficient of variation of offer wages, separately
by education. The mean offer wage at age 25 is normalized to 1.0, so one can read wage
growth off the graphs. In the benchmark, wage growth from age 25 to 55 is 27% for the high
school and some college types, and 74% for the college type. When we shut down health
shocks, and allow decision rules to adapt, wage growth increases to 35% for the high school
type, 34% for some college types, and 81% for college types.

In the baseline model, the coefficient of variation (CV) of offer wages grows substantially
from age 25 to 55, from .37 to .45 for the high school type, .40 to .48 for the some college
type, and .42 to .58 for the college type. Thus, for the more educated, the CV starts higher
and grows more with age. When we shut down health shocks and allow decision rules to
adapt, the growth of the CV declines by 2/3 within the high school and some college types.
But for the college type the figure is only 23%. Thus, health shocks account for only a
modest fraction of the growth in offer wage inequality over the life-cycle for college workers,
but for a very large share within the high school and some college groups. And, as we see in
Figure 13, most of that large share is due to the behavioral response to health risk.

Table 17 reports how eliminating health shocks at ages 25-64 affects mean offer wages
across all ages. Averaged over all types, the mean offer wage increases from $22.88 in the
baseline to $23.56 in the counterfactual, which is only 3%. However, Table 17 also reveals
that the growth in mean offer wages is very concentrated among the low-skill types. Within
the high school, some college and college types the mean offer wage of the low-skill types
grows by 11.1%, 7.5% and 7.1%, respectively. The growth for higher skill types is much
smaller. This largely reflects the increased labor supply and human capital accumulation of
low skill workers in the absence of health shocks.

Finally, the results in Table 17 show that eliminating health shocks at ages 25-64 causes
mean lifetime work hours to increase by 15.1% while the mean offer wage increases by only
3%. Thus, health shocks reduce work hours far more than they reduce offer wages. We saw
in Table 13 that elimination of health shocks increases PVE by 9.3%, which is much less than
the roughly 18% increase in undiscounted earnings. This is because most of the increases in
hours and wages are concentrated at older ages.

7.5.3 Health Shocks and Social Insurance

As we saw in Table 8, our baseline model accurately predicts the fraction of working age
men who receive social transfers or disability benefits. In Table 16, our model predicts the
elimination of health shocks would cause the fraction who receive social transfers to drop
from 12.9% to 2.0%. This is a much larger than the drop to 8.9% that we saw in Table 11
in the exercise where we held decision rules fixed. Thus, roughly 2/3 of the drop in social
transfer receipt is due to the behavioral response to reduced health risk.

The behavioral response is a substantial increase in labor supply, concentrated among
low-skill workers. In Table 11 we saw the direct effect of eliminating health shocks is to
increase lifetime work from 29.8 full-time equivalent years to 32.1 years, while in Table 17 we
see that the behavioral effect leads to an additional increase to 34.3 years. Among low-skill
high school types average work years increase from 19.9 to 31.1, the drop in all social transfer
receipt is 41.6% to 8.6%, and the drop in disability receipt is 8.4% to 1.5%.
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The behavioral response of reduced health risk generating increased labor supply arises
because, once health risk is reduced, agents have less incentive to constrain labor supply so as
to maintain eligibility for social insurance. Similarly, Pashchenko and Porapakkarm (2017)
find that means-tested Medicaid discourages labor supply, as some agents would rather exit
the labor force and receive Medicaid than work and pay medical costs out-of-pocket.51

New from prior literature, in our model health risk and social insurance also interact to
reduce incentives for human capital investment. Agents anticipate that future health shocks
and the possibility of qualifying for means-tested transfers will reduce future employment.
As human capital generates zero returns in periods of non-employment, this reduces the
incentive for human capital investment today, further reducing current labor supply.

7.6 The Effect of Health Risk on Earnings Inequality
Next we ask how heterogeneity in health risk contributes to earnings inequality. In our

model, the probability distribution of predictable health shocks (dp) and the laws of motion
for health (H) and risk factors (R) differ by education. Less educated workers face a higher
probability of predictable health shocks, and they face higher probabilities of transition to
inferior health states (see Figures 1 to 3).52 To what extent do these differences in health risk
by education generate differences in labor supply, human capital investment and earnings?

To address this question, we conduct counterfactuals where we equalize heath risk across
different types of agents. Specifically, we give all agents, regardless of education, the health
transition functions and health shock distribution of the some college type.53 The results are
reported in Table 18. Our key finding is that the mean present value of earnings (PVE) of
high school types only increases by 2.8% in this experiment. In contrast, in Table 13, when
we eliminated health shocks entirely, the PVE of high school types increased by 11.8%.
Furthermore, because the earnings of high school types increases so modestly, the overall
Gini coefficient actually increases from .304 to .319 when we equalize health risk.54

Do these results imply that heterogeneity (by education) in the risk of health shocks is
not an important source of earnings inequality? That would be an incorrect interpretation.
Rather, what drives these results is that, even in the lower risk environment, high school

51Hubbard et al. (1995) quantify the degree to which social insurance, that cushions against idiosyncratic
income shocks, discourages labor supply and saving for self-insurance purposes. Our results extend theirs
by quantifying how means-tested health insurance programs (like Medicaid) discourage labor supply in an
environment with health shocks that generate health care costs.

52It is well known that education is positively associated with health (e.g., Grossman and Kaestner (1997),
Grossman (2000), Smith (2004, 2007), Cutler and Lleras-Muney (2008). We discuss possible reasons for the
correlation in Section 7.3, but it is beyond the scope of our analysis to explain what ultimately drives the
positive education/health association (see Hai and Heckman 2019 and Heckman et al. 2018 for recent work on
this question). Instead, we focus on using our model to examine how differences in health risk by education
level – taken as given – affect earnings inequality, labor supply and other behaviors.

53We do this because the level of health risk faced by the some college type is intermediate between that
faced by the high school and college types. Alternatively, we can also re-estimate the H, R and dp functions
with education omitted, and simulate the behavior of all agents when they face these common equations
describing health risk. That approach generates very similar results.

54What drives the increase in the Gini is that low-skill college types work quite a bit less when their health
risk is increased to the level of the some college type. This enables them to stay eligible for transfers in the
event of expensive health shocks. Thus, inequality increases substantially within the college type.
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types still have a strong incentive to constrain their labor supply so as to maintain eligibility
for transfers that protect them from high medical costs. Reducing the health risk they face
to the some college level does little to change that fact. In contrast, the larger risk reduction
generated by removing health shocks entirely does change their incentives fundamentally.

7.7 Providing Public Health Insurance to the Uninsured
Finally, we use our model to simulate the impact of providing government funded health

insurance to uninsured workers. In the baseline environment 35% of working age men lack
employer provided health insurance (ESHI), and 12.9% resort to social insurance (including
disability benefits) to pay health care costs. As we saw in Table 7, rates of coverage by ESHI
vary greatly by age, education and full or part-time employment status, and our model
provides a good fit to these patterns.55 The fractions of high school, some college and college
types with ESHI are 54%, 67% and 77%, respectively.

In our counterfactual experiments we leave ESHI as in the benchmark, but assume that
all uninsured individuals participate in a mandatory government funded health insurance
program.56 Participants in the public plan pay an annual premium equal to the employee’s
share of the ESHI premium in the benchmark ($652/year), and this is tax deductible. They
face a co-insurance rate of 30%, which is comparable to the typical ESHI plan.

Tables 19 and 20 present the results. The mandatory public insurance program spends on
average $4,031/year per privately uninsured individual. A large fraction of this is accounted
for by expenditures on those who were previously covered by Medicaid/DI. The average
Medicaid/DI expenditures per uninsured person decline from $2,886 in the baseline to $599.
The average out-of-pocket medical expenses of the uninsured decline from $2,858 to $1,130.

The employment rate increases from 83.1% to 85.3% when the public plan is introduced.
Not surprisingly, this is primarily driven by an increase in the fraction of job offers without
ESHI that are accepted, from 84.8% in the baseline to 89.8%. The fraction of job offers
with ESHI that are accepted also increases slightly from 89.1% to 90.6%. Lifetime labor
supply increases from a mean of 29.8 years in the baseline to 30.6 years in the experiment
(a 2.7% increase). Because labor supply increases, human capital accumulation, wage offers
and lifetime earnings increase as well. The mean offer wage increases from $22.55 per hour to
$22.68 per hour, and the present value of lifetime earnings increases from $762k to $772k, a
1.3% increase. Increases in labor supply and earnings are greater among the low-skill types.

In addition to increasing labor supply, introduction of public health insurance also reduces
the fraction of working age men who rely on social insurance (i.e., the consumption floor,
including Medicaid, disability, Foodstamps, etc.), from 12.9% in the benchmark to 8.8% in
the experiment. As we see in Table 19 government expenditures on social insurance decline
by $762 per capita (36%) from the benchmark, a substantial cost savings.

55A limitation of our model is we assume all unemployed workers lack ESHI. In reality, 10% (17%) of
unemployed men aged 26-44 (45-64) were covered by their previous employer’s plan in 2010 (Janicki (2013)).
Accounting for this would significantly complicate the model, as we would need to add a state variable.

56If we were to introduce a universal health insurance plan that replaced employer provided health insurance
we would need to account for how wage/job offer distributions and government revenues change when firms
no longer receive tax benefits for providing ESHI. But this is beyond the capacity of our partial equilibrium
model. For this reason, we only present results from experiments where ESHI remains unchanged.
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Together, the declines in social insurance payments slightly outweigh the $689 per capita
cost of the new public health insurance plan. After taking into account all changes in
expenditures on other programs, as well as the increase in government revenue stemming
from the increase in labor supply, we find that the introduction of the public insurance plan
actually saves the government $64 per capita.57

There are two important caveats to this finding: First, we abstract from any moral
hazard effects of enhanced insurance coverage on total medical expenditures. Second, if
provision of public insurance increases demand for medical services, it could increase their
price. Thus, our experiment is likely to understate the cost of providing public insurance.58

Given these limitations, our aim is simply to quantify the extent to which provision of public
health insurance would (i) increase labor supply and tax revenues, and (ii) reduce reliance
on Medicaid and other social transfers, reducing government spending. These two channels
are important enough to outweigh the direct cost of the program, so that any cost increase
arises through the secondary effects of moral hazard and increased prices.

Finally, assuming it would be self-financing, we find that the consumption equivalent
variation (CEV) of introducing the public insurance plan is 1.44% of baseline consumption.59

In Table 20 we see that the low educated groups experience larger welfare gains: 2.0% in
CEV for HS types, 1.1% for some college and 0.9% for college graduates.60

7.8 Labor Supply Elasticities
In early life-cycle labor supply models saving is the only source of dynamics, and wages

are taken as exogenous (see MaCurdy 1981). As life-cycle models are extended to include
additional sources of dynamics, such as human capital and persistent health shocks, it is
important to assess the implications for labor supply elasticities. Table 21 reports elasticities
with respect to permanent and transitory wage/tax changes implied by our model.

The elasticity of lifetime hours with respect to a permanent wage/tax change is 1.32. If
we look at effects on labor supply at different ages, we see the elasticity increases with age,

57In this calculation, we factor in all expenditures on social insurance, social security, and medical expenses
covered by Medicare and the public insurance program, as well as all taxes and premiums collected.

58We may also understate the benefit of public insurance if it improves health. We do not know how H
and R transitions would change for the uninsured who obtain public insurance, so we take a conservative
approach and assume they have the same H and R transitions as the uninsured in the benchmark economy.
If public insurance leads to better health transitions, our experiments will underestimate its value.

59The consumption equivalent variation (CEV) is given by: CEV =
h
V (c⇤,l⇤)�D(c0,l0)
V (c0,l0)�D(c0,l0)

i 1
↵(1��) � 1, where

(c0, l0) and (c⇤, l⇤) are the consumption-labor allocations in the benchmark and in the counterfactual, V is
the expected discounted value at age 25, and D(c0, l0) is the expected discounted sum of death costs at age
25 in the benchmark. D depends on (c, l) up to age 65 since these affect employment decisions and income,
which in turn affect H and R transitions and thus the probability of death. The CEV takes into account
changes in welfare arising from different life expectancies in the counterfactuals.

60Within education groups, gains are larger for those with high productivity. For example, for those with
high school or less, the welfare gains are 1.0%, 2.4%, and 2.7% for the low, medium and high productivity
groups. The higher productivity types benefit more because fewer of them are at the consumption floor,
and hence fewer of them can rely on government transfers to cover medical costs. Note that the new public
insurance plan covers 70% of medical expenditures, which are on average $4,500/year. Given the premium
is $652/year, those not at the consumption floor get approximately $2,500 in additional disposable income,
which translates into a 2-3% increase in consumption.
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from 0.92 at age 30 to 2.4 at age 60. Thus, a permanent wage increase leads to a relatively
much greater increase in labor supply at older ages.

Table 21 also reports Frisch elasticities of labor supply with respect to transitory antici-
pated wage/tax changes. The Frisch elasticity follows a U-shape by age, going from 0.35 at
age 30 down to 0.21 at age 40 and then up to 0.51 at age 60. This pattern is not surprising:
Keane and Wasi (2016) explain why, in models with both human capital and a participation
margin, the Frisch elasticity tends to follow a U-shape with age.

Looking at results by education, one finding is especially notable: The labor supply of
young college workers is particularly sensitive to permanent wage/tax changes. This reflects
the fact that returns to experience are substantial for young college workers, and a permanent
tax increase has a large negative impact on that return.

8 Conclusion
In this paper, we study how health shocks affect earnings and contribute to life-cycle earn-

ings inequality. We extend the basic life-cycle model of labor supply and savings by adding
four key features: (1) a detailed health process that includes several dimensions of health:
functional health, health risk factors, and health shocks that are predictable/unpredictable
and temporary/persistent, (2) endogenous wage determination via human capital accumula-
tion, (3) tied job offers that specify the wage, hours and employer sponsored health insurance
coverage, and (4) a simple specification of means-tested social insurance. Previous work has
included some of these features, but not all four simultaneously. Our model provides a good
fit to many important aspects of the data, such as life-cycle paths of full-time employment,
assets and wages (conditional on education/health), the evolution of the Gini coefficient for
earnings by age, the fraction of men (by age/education) who receive social transfers and
disability benefits, and the distribution of medical spending.

The extended features of our model enable us to quantify the channels through which
health shocks affect earnings. For instance, we show how a substantial part of the impact of
health shocks on earnings arises via their effect on human capital accumulation. In particular,
we use our model to simulate a persistent health shock that is serious enough to cause a drop
in functional health. The model implies such a “major” health shock reduces present value
of remaining lifetime earnings for a male college graduate at age 40 by $44.7k or 4.5%. We
estimate that 60% of this loss is due to the direct impact of the health shock on offer wages
and labor supply. But a substantial 40% of the loss arises because the health shock slows the
rate of human capital accumulation. For those with a high school degree or less, a similar
major health shock reduces the PV of earnings at age 40 by $33.4k or 7.9%. Of this, 25% is
due to the human capital channel. The human capital channel is relatively more important
for college graduates because they have a higher rate of human capital accumulation.

We also quantify how different types of health shocks affect earnings and labor supply of
working age men. We find health shocks that are predictable - based on health, education
and risk factors like hypertension and high cholesterol - have much smaller impacts than
unpredictable shocks. For example, our model implies unpredictable health shocks reduce
lifetime labor supply by 1.7 years (or 5%) for a typical man (with most of this due to the
persistent predictable shocks), while predictable shocks only cost 0.4 years. The predictable
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health shocks play a smaller role because they are much less common than unpredictable
shocks prior to age 65. As a consequence, policies aimed at reducing risk factors like high
blood pressure and cholesterol are not likely to have large effects on labor market outcomes
for working age men. Of course, the potential benefit of reducing risk factors is greater at
ages over 65, when predictable shocks become more prevalent.

Our model implies that health shocks explain roughly 15% of inequality in present value of
lifetime earnings (PVE) across all workers. Within education groups, health shocks explain
roughly 25% of inequality within high school workers, 21% within some college workers,
and 17% within college workers. However, analogous with results in Keane and Wolpin
(1997), we find that, even in a life-cycle model extended to include health and health shocks,
worker’s education and “skill endowment” (at labor market entry) still explain over 80% of
the heterogeneity in the PVE. Importantly, health shocks mostly affect earnings of older
workers, which are discounted when taking present values at age 25. For men in their 50s
and 60s, we find that health shocks can explain about a quarter of income inequality.

We use our structural model to decompose effects of health shocks on earnings into
“direct” effects that hold decision rules fixed, and “behavioral” effects that arise because
health risk changes decision rules for labor supply and savings. We find direct effects of health
shocks account for only 1/3 of their impact on earnings inequality, while behavioral responses
account for 2/3. The extended features of our model are important in this decomposition:

The large behavioral effect of health risk on earnings inequality arises because low-skill
workers - who often lack employer sponsored insurance - have a strong incentive to hold down
their labor supply so as to maintain eligibility for means-tested social insurance that cushions
against high potential medical costs. This reduces their rate of human capital accumulation,
leading to slower wage growth over the life-cycle, and lower earnings. In contrast, among
high skill workers, social insurance has no significant effect on labor supply. This asymmetry
in responses generates the positive behavioral effect of health risk on earnings inequality.

Thus, in an environment with costly health shocks, means-tested social insurance creates
a type of “moral hazard” that reduces labor supply and human capital investment of low
skill workers (analogous to how health insurance may generate moral hazard by reducing
the incentives to invest in health). Quantitatively, we find this moral hazard effect on
labor supply is substantial. Providing public health insurance to those who lack employer
sponsored insurance counteracts it, leading to both (i) substantial government cost saving
on means-tested social insurance programs, and (ii) increased tax revenues due to increased
labor supply. Hence, our model predicts that a program providing subsidized mandatory
public health insurance to the uninsured would be self-financing and welfare improving.

Previous literature has considered the potential for public health insurance to generate
an ex-ante moral hazard effect that reduces the incentive to invest in health (see Khwaja
2001). In contrast, we find public health insurance alleviates the moral hazard problem that
arises because means-tested social insurance discourages labor supply and human capital
investment in the presence of health risk. A limitation of our analysis is we ignore any
effect of public insurance on (i) health care spending of the newly insured (via the ex-post

moral hazard effect), or (ii) the price of medical care (via increased demand for services). So
we likely understate the cost of the program. Nevertheless, our key point is that any cost
evaluation of public health insurance should factor in the positive effect on labor supply and
the savings on social transfers.
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Tables

Table 1: Wages, Hours and Earnings Regression Results, MEPS

Dependent Var Log Wage Weekly Hours Annual Earnings
Mean 3.056 35.098 82.888
SD 0.563 19.283 38.564
s 0.003 -0.397⇤⇤⇤ -0.717⇤⇤⇤

(0.004) (0.174) (0.305)
dp 0.003 -1.216⇤⇤⇤ -2.543⇤⇤⇤

(0.006) (0.284) (0.522)
du 0.005 -1.375⇤⇤⇤ -2.123⇤⇤⇤

(0.005) (0.227) (0.405)
Lagged Dep. Var. 0.878⇤⇤⇤ 0.679⇤⇤⇤ 0.734⇤⇤⇤

(0.006) (0.007) (0.006)
Education

Some College 0.031⇤⇤⇤ 1.040⇤⇤⇤ 2.588⇤⇤⇤
(0.005) (0.211) (0.368)

College 0.085⇤⇤⇤ 2.166⇤⇤⇤ 7.005⇤⇤⇤
(0.006) (0.192) (0.377)

Initial Health
Fair 0.020 5.151⇤⇤⇤ 8.916⇤⇤⇤

(0.020) (0.405) (0.761)
Good 0.036⇤ 6.543⇤⇤⇤ 12.020⇤⇤⇤

(0.020) (0.429) (0.796)
R2 0.836 0.552 0.643
Observations 22,875 37,004 38,065
Standard errors in parentheses
⇤ p < 0.1, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01

Notes: s, dp and du are health shock indicators defined in the text. All regressions include year
dummies, and a cubic in age. The wage regression is estimated using only workers employed in
both interviews 1 and 5. The Weekly Hours regression is estimated on all workers, including those
with zero hours. For the 79.2% of the sample with positive hours, mean hours are 43.083 with a
standard of 10.620. The earnings regression also includes non-employed workers, and incorporates
a Box-Cox transform of annual earnings, with lambda = 0.326. If we drop controls for health and
health shocks, the R-squared of the three regressions decline to 0.836, 0.543 and 0.635, respectively.

37



Table 2: Classifying Medical Conditions

Assignment Short-Term Long-Term Predictor Predictable Number of
Productivity Productivity ICD codes

dp YES YES YES YES 27
du YES YES YES NO 18
dp YES YES NO YES 38
du YES YES NO NO 272
s YES NO YES YES 3
s YES NO YES NO 8
s YES NO NO YES 6
s YES NO NO NO 298
s Unknown condition or condition details missing 1
R NO YES YES YES 5
R NO YES YES NO 6
R NO YES NO YES 1
R NO YES NO NO 0
R NO NO YES YES 6
R NO NO YES NO 23

Not used NO NO NO YES 9
Not used NO NO NO NO 269

Table 3: Work Hours Lost Due to Health Shocks (Sick Days)

HS or Less Some College and College
Health Shocks H=Poor H=Fair H=Good H=Poor H=Fair H=Good

du = 0, dp = 1, s = 0 0.0 4.0 0.0 0.0 2.6 1.4
du = 0, dp = 0, s = 1 0.0 2.5 0.0 1.3 1.5 0.6
du = 0, dp = 1, s = 1 4.2 6.0 5.5 7.6 6.1 3.6
du = 1, dp = 0, s = 0 5.0 7.5 1.4 1.7 1.6 1.0
du = 1, dp = 1, s = 0 8.5 9.6 0.0 8.3 7.3 3.9
du = 1, dp = 0, s = 1 7.1 9.1 4.0 7.1 5.8 3.6
du = 1, dp = 1, s = 1 6.1 13.4 9.5 19.7 14.3 12.1

Note: We estimate weekly lost work hours using a regression of weekly hours worked on health risk, age, age2 and
all health shock combinations (no health shocks is the base group). Regressions are run separately by functional
health and education. Coefficients that are not statistically significant at the 10% level are set to zero.
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Table 4: Model Parameters

Parameter Value
Preferences
CRRA parameter ↵ 0.4
Intertemporal substitution parameter � 2.0
Cost of death ⇣ -30.0
Interest rate
r 0.04
Tax Parameters
Consumption tax ⌧ c 5.70%
Social Security tax ⌧SS 6.20%
Medicare tax ⌧Med 1.45%
Income threshold y

ss
$98,000

Tax function parameter a0 0.258
Tax function parameter a1 0.768
Social Security Income

HS or Less $13,655
Some College $14,678
College $15,883

Health Insurance
Fraction of ME paid by Medicare qMed 50%
Fraction of ME paid by Employer Insurance qEI 70%
Medicare premium pMed $854
Employer Insurance Premium (Employee’s Share) pEI $652

Note: Average Social Security income is calculated from the HRS. The tax function parameters a0
and a1 are taken from Gouveia and Strauss (1994). The co-insurance rates qEI and qMed are taken
from Attanasio et al. (2010). The Medicare premium pMed is set to the average annual Medicare
Part B premium over the sample period, adjusting for the CPI. The average employee’s share of
the ESHI premium pEI for a single’s plan is calculated using the MEPSnet/IC Trend Query tool
available at https://www.meps.ahrq.gov/mepsweb/data_stats/MEPSnetIC.jsp.
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Table 6: Calibrated Employment Offer Probabilities, ages 25-53

HS or Less Some College College
PT, no ESHI 0.050 0.031 0.013
PT, ESHI 0.050 0.030 0.032
FT, no ESHI 0.288 0.167 0.100
FT, ESHI 0.613 0.772 0.855

Notes: At ages 54-64, we allow for a positive probability of having no employment offer. The
probabilities of PT and FT offers are scaled down appropriately.

Table 7: The Distribution of Employment, Model and Data

<=HS Some College College
Model Data Model Data Model Data

Ages 25-34
NE 7.5 8.2 8.4 6.0 8.0 4.9
PT, no ESHI 4.6 5.7 2.9 4.2 1.1 2.4
PT, ESHI 4.5 2.8 2.7 3.4 2.6 4.1
FT, no ESHI 26.5 31.1 15.3 17.5 9.1 9.6
FT, ESHI 56.9 52.2 70.7 68.9 79.1 78.9
Ages 35-44
NE 8.1 10.2 6.3 6.5 3.8 3.5
PT, no ESHI 4.6 4.4 2.9 2.6 1.3 1.3
PT, ESHI 4.5 2.7 2.8 2.9 3.0 2.7
FT, no ESHI 26.0 23.1 15.3 14.0 9.6 10.2
FT, ESHI 56.8 59.7 72.7 74.1 82.4 82.3
Ages 45-54
NE 16.8 18.0 15.7 12.3 8.0 6.3
PT, no ESHI 4.0 3.8 2.6 2.6 1.2 1.4
PT, ESHI 4.0 3.2 2.4 3.6 2.9 3.1
FT, no ESHI 22.8 17.8 13.3 12.9 9.1 10.2
FT, ESHI 52.4 57.2 66.0 68.6 78.8 78.9
Ages 55-64
NE 50.0 43.7 41.4 36.3 34.0 26.1
PT, no ESHI 2.5 4.1 1.9 3.1 1.0 2.3
PT, ESHI 2.3 4.9 1.6 6.3 2.1 6.8
FT, no ESHI 12.9 11.4 8.8 10.0 6.1 9.3
FT, ESHI 32.4 35.8 46.3 44.3 56.7 55.5
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Table 8: Calibration Moments, Model and Data

HS or Less Some College College
Model Data Model Data Model Data

1. Identifying �

Assets/income ratio, ages 30-55 1.22 1.21 1.27 1.32 1.85 1.88
2. Identifying the leisure cost of work
% emp FT, no shocks, ages 30-50: H = Poor 26.11 31.01 17.53 11.11 34.68 57.14

H = Fair 78.43 78.00 80.64 82.22 86.54 88.26
H = Good 85.97 85.22 90.25 89.21 92.47 91.42

% emp PT, no shocks, ages 30-50: H = Poor 3.08 11.63 1.23 0.00 1.50 0.00
H = Fair 8.31 6.13 5.14 6.43 3.98 6.33
H = Good 9.30 5.13 5.84 4.30 4.22 3.82

3. Identifying Mean of the Offer Wage Function
Wages, FT, H = Good: ages 25-34 16.57 15.30 20.66 19.47 27.60 29.94

ages 45-54 20.53 18.98 25.70 25.44 39.38 37.95
Wages, FT, ages 30-55: H = Poor 13.88 15.59 18.92 21.52 25.06 29.32

H = Fair 18.18 16.14 22.21 22.32 32.68 32.65
H = Good 19.01 17.68 23.71 23.77 35.37 35.81

Wages PT/ Wages FT, ages 30-55 0.93 0.93 0.94 0.94 0.90 0.90
4. Identifying Covariance Structure of Wages
Variance of fixed effect 0.03 0.11 0.06 0.08 0.09 0.08
Variance of transitory shock 0.20 0.07 0.12 0.07 0.11 0.08
Permanent shock persistence 0.85 0.94 0.86 0.84 0.89 0.93
Variance of innovation 0.01 0.02 0.01 0.04 0.01 0.03
Variance of log wages, FT, ages 30-55 0.26 0.26 0.23 0.24 0.27 0.28
% Emp to Non-Emp trans. rate, ages 30-55, H = Good 2.61 3.02 2.29 2.86 1.51 2.29
% Non-Emp to Emp trans. rate, ages 30-55, H = Good 63.08 42.51 66.20 46.59 48.57 48.72
5. Identifying Consumption floor and DI (%)
% non-DI individuals getting transfers, ages 30-55 8.46 9.26 7.22 7.53 5.02 3.68
Average DI benefits 10,268 9,920 14,175 11,941 17,653 16,839
% receiving DI if H = Poor 73.87 80.33 78.41 83.56 55.85 64.30
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Table 9: Wage Distribution, Model and Data (CPS)

HS or Less Some College College
Distribution of Wages Model Data Model Data Model Data
Percentiles, Ages 30-35
5 6.5 7.1 8.6 9.1 11.3 12.2
25 10.5 11.7 13.3 15.6 17.8 21.0
50 14.8 16.5 18.6 21.1 25.6 29.3
75 20.9 22.6 26.2 28.3 37.2 41.4
90 28.4 29.7 34.9 37.4 50.4 54.8
95 34.0 36.1 40.6 44.3 58.8 66.8
99 46.9 50.8 51.9 65.1 76.7 114.0
Percentiles, Ages 50-55
5 8.0 7.7 10.9 9.7 14.7 12.0
25 12.8 13.5 16.6 17.1 23.9 23.4
50 18.0 19.3 23.1 24.4 34.9 34.3
75 25.4 26.4 32.3 33.1 50.7 48.9
90 34.6 35.3 42.5 43.5 69.7 68.1
95 41.5 41.7 49.5 52.0 83.3 89.2
99 57.4 59.2 63.9 76.2 120.5 168.1

Notes: Hourly wages expressed in constant 2010 CPI adjusted dollars. The data is from the CPS,
screening out workers in the top 1% of the wage distribution, or with wages below $3.50/hour.
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Table 10: Effects of Severe Health Shocks on Present Value of Earnings

Age of Shock � PV Earnings � FT Yrs Work

HC fixed Total Effect Due to HC HC fixed Total

% % % of total

High School

30 -19,495 -3.7 -28,345 -5.4 31.2 -0.64 -0.99
40 -25,015 -5.9 -33,410 -7.9 25.1 -0.73 -1.05
50 -29,348 -11.1 -33,848 -12.8 13.3 -0.78 -0.92
60 -13,777 -21.6 -13,959 -21.9 1.3 -0.31 -0.31
Some College

30 -21,335 -3.0 -33,226 -4.6 35.8 -0.55 -0.99
40 -27,028 -4.6 -40,555 -6.8 33.4 -0.66 -1.19
50 -31,225 -8.0 -37,710 -9.7 17.2 -0.70 -0.91
60 -18,013 -15.6 -18,377 -15.9 2.0 -0.30 -0.31
College

30 -19,527 -1.7 -39,688 -3.5 50.8 -0.34 -1.02
40 -26,733 -2.7 -44,749 -4.5 40.3 -0.39 -0.93
50 -33,487 -4.9 -40,214 -5.9 16.7 -0.39 -0.55
60 -25,227 -13.6 -26,462 -14.2 4.7 -0.24 -0.26

Notes: We compare simulations where all individuals experience a du shock followed by a drop in H at
the indicated age, with simulations where no individuals experience such an event. Thus we report average
effects. In the “HC Fixed” scenario we hold human capital (HC) fixed at the levels that arise in the scenario
where the health shock does not occur. Present values are calculated from the age of the shock to age 65.

Table 11: The Importance of Health Shocks in the Benchmark Model

ME Sick days Surv to 65 (%) Emp (%) Yrs Worked SI (%) Wage Offer
Benchmark 4,465 8.26 85.18 83.13 29.82 12.86 22.88
No s shocks 2,894 4.35 85.74 83.87 30.60 11.42 22.98
No du shocks 3,050 3.85 90.09 84.66 31.24 10.48 23.13
No dp shocks 3,858 6.23 89.64 83.55 30.47 12.08 22.95
No s and du 1,571 1.15 90.10 85.08 31.74 9.53 23.18
No s, du, dp 1,041 0.00 92.38 85.41 32.14 8.92 23.25
Low R 4,211 7.47 87.22 83.73 30.25 12.11 22.92

Notes: Data are simulated from the Benchmark model, with the indicated health shocks shut down at ages 25-64,
but with decision rules unchanged. ME is total annual medical expenditure in dollars. Sick days are expressed
in number of lost full time work days per year. “Yrs Worked” is lifetime labor supply in full time equivalent years
(max = 40 years). Statistics are for ages 25-64 only, and we combine all education groups.
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Table 12: Explaining the Variance of the Present Value of Lifetime Earnings

R2 from PV Earnings Regressions
Independent Variables Included <=HS Some College College All
1. Initial conditions⇤ 0.797 0.855 0.787 0.868
2. Health, health shocks + Initial conditions 0.898 0.928 0.866 0.924
3. Health, health shocks only 0.358 0.337 0.230 0.400

Notes: The table reports R2 from regressions of the present value of lifetime earnings on initial conditions
and/or health measures, using simulated data from the benchmark model. Initial conditions are the latent
skill type () and H and R at age 25. In the “All” column that combines education groups, we also include
education and its interactions with , H25 and R25. In Rows 2 and 3, “health, health shocks” are H and R
at ages 25 and 64, age of death if less than 65, ages that du and dp shocks first occur, total years the agent
was in Poor/Fair/Good health, and the total number of times each possible combination of health shocks
occurred between the ages of 24 and 64, entered separately by health status at the time of occurrence.

Table 13: Health Shocks and Inequality in the Present Value of Lifetime Earnings

Benchmark No Health Shocks No Health Shocks
Decision Rules Fixed Decision Rules Change

Mean CV Gini Mean CV Gini Mean CV Gini
All 762,177 0.555 0.304 +5.56% 0.528 0.289 +9.26% 0.479 0.258
By Education
High School 523,423 0.376 0.216 +7.41% 0.350 0.200 +11.83% 0.286 0.163
Some College 711,746 0.435 0.245 +5.72% 0.411 0.231 +9.94% 0.350 0.194
College 1,091,345 0.445 0.253 +4.42% 0.425 0.241 +7.41% 0.375 0.210
By Productivity
High School
Low Productivity 293,730 0.300 0.170 +12.85% 0.273 0.155 +37.49% 0.169 0.089
Med Productivity 539,185 0.150 0.077 +7.14% 0.130 0.063 +7.43% 0.125 0.060
High Productivity 734,667 0.134 0.065 +5.47% 0.122 0.059 +5.36% 0.124 0.059
Some College
Low Productivity 425,701 0.256 0.144 +9.18% 0.233 0.130 +23.80% 0.140 0.072
High Productivity 997,662 0.127 0.059 +4.24% 0.114 0.053 +4.04% 0.114 0.053
College
Low Productivity 661,093 0.312 0.172 +7.09% 0.279 0.149 +17.34% 0.166 0.086
High Productivity 1,521,622 0.158 0.080 +3.26% 0.152 0.077 +3.10% 0.150 0.076

Note: The mean (across simulated agents) of the present value of earnings (PVE) is expressed in
2010 dollars. CV denotes the coefficient of variation.
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Table 14: Effects of Health Shocks on the Present Value of Lifetime Earnings

Benchmark No s Shocks No dp Shocks No du Shocks

Mean Gini Mean Gini Mean Gini Mean Gini

All 762,177 0.304 +4.20% 0.282 +3.37% 0.287 +6.57% 0.269
By Education

High School 523,423 0.216 +4.12% 0.194 +2.91% 0.202 +7.85% 0.179
Some College 711,746 0.245 +4.45% 0.222 +3.96% 0.225 +6.96% 0.208
College 1,091,345 0.253 +4.12% 0.226 +3.35% 0.229 +5.62% 0.216

Note: The mean of the present value of earnings (PVE) is expressed in 2010 dollars. Decision rules
are allowed to change when eliminating each type of shock.

Table 15: Inequality in the Present Value of Earnings, Evaluated at Age 25

Benchmark No ME of Health Shocks No ME of Health Shocks
Decision Rules Fixed Decision Rules Change

Mean CV Gini Mean CV Gini Mean CV Gini
All 762,177 0.555 0.304 +0.23% 0.551 0.302 +2.49% 0.511 0.278
By Education
High School 523,423 0.376 0.216 +0.37% 0.372 0.213 +3.28% 0.329 0.188
Some College 711,746 0.435 0.245 +0.15% 0.434 0.245 +2.73% 0.395 0.221
College 1,091,345 0.445 0.253 +0.18% 0.440 0.250 +1.93% 0.395 0.223
By Productivity
High School
Low Productivity 293,730 0.300 0.170 +1.08% 0.302 0.172 +16.32% 0.232 0.129
Med Productivity 539,185 0.150 0.077 +0.63% 0.148 0.075 +1.04% 0.141 0.070
High Productivity 734,667 0.134 0.065 -0.12% 0.132 0.064 -0.01% 0.134 0.064
Some College
Low Productivity 425,701 0.256 0.144 +0.20% 0.260 0.146 +8.87% 0.198 0.107
High Productivity 997,662 0.127 0.059 +0.14% 0.125 0.059 +0.11% 0.123 0.059
College
Low Productivity 661,093 0.312 0.172 +0.90% 0.303 0.165 +9.21% 0.206 0.108
High Productivity 1,521,622 0.158 0.080 -0.13% 0.158 0.080 -1.24% 0.162 0.082

Notes: The mean (across simulated agents) of the present value of earnings (PVE) is expressed in
2010 dollars. CV denotes the coefficient of variation.
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Table 16: Counterfactual Experiments: Employment and Social Insurance

Employment (%) Social Insurance (%)

Bench No HS No ME-HS Bench No HS No ME-HS

All 83.1 91.2 87.6 12.9 2.0 5.6
High School 80.2 89.6 85.6 15.9 2.9 7.6
Some College 82.7 92.5 87.7 14.1 1.9 6.6
College 86.9 92.2 89.9 8.2 0.9 2.4
High School

Low Productivity 57.1 84.3 71.7 41.6 8.6 22.1
Med Productivity 89.0 91.8 91.1 7.3 0.4 1.6
High Productivity 92.7 92.2 92.7 0.7 0.1 0.2
Some College

Low Productivity 69.9 89.9 79.9 28.1 3.7 13.2
High Productivity 95.4 95.2 95.3 0.2 0.1 0.1
College

Low Productivity 80.1 92.0 88.5 16.4 1.8 4.9
High Productivity 93.7 92.5 91.2 0.0 0.0 0.0

Notes: In the “No HS” counterfactual we eliminate health shocks at working ages. In “No ME-HS”
we remove (only) the medical expenditures associated with health shocks at working ages. In each
counterfactual, agents update their decision rules (for labor supply and saving) to reflect the new
environment. The full-time employment rate and the rate of receiving government transfers are
both calculated in the cross-section of working age men.
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Table 17: Counterfactual Experiment: Effects of Eliminating Health Shocks

FT Yrs Worked Mean Wage Offers DI (%)
Bench No HS Bench No HS Bench No HS

All 29.83 34.33 22.88 23.56 2.46 0.38
High School 27.96 33.11 16.07 16.64 3.62 0.61
Some College 29.94 35.01 20.78 21.41 2.79 0.47
College 32.01 35.26 32.03 32.90 0.82 0.05
High School
Low Productivity 19.93 31.13 10.76 11.95 8.40 1.53
Med Productivity 31.04 33.92 15.95 16.31 2.42 0.25
High Productivity 32.38 34.14 21.44 21.71 0.31 0.10
Some College
Low Productivity 25.32 33.99 13.70 14.73 5.43 0.83
High Productivity 34.56 36.03 27.81 28.09 0.17 0.11
College
Low Productivity 29.44 35.16 20.53 21.98 1.61 0.08
High Productivity 34.58 35.35 43.47 43.81 0.03 0.02

Notes: In the counterfactual we eliminate health shocks at ages 25-64, and let agents re-optimize
their decision rules to the new environment. Full-time equivalent years worked over the life-cycle
is an average over all simulated agents. All other statistics are calculated in the cross-section of
working age men. Mean offer wages are calculated using only individuals with full-time employment
offers.

Table 18: Inequality in the Present Value of Earnings, Evaluated at Age 25

Benchmark Some College ⇤H , ⇤R and �dp

Mean CV Gini Mean CV Gini

All 762,177 0.555 0.304 -3.14% 0.581 0.319
By Education

High School or Less 523,423 0.376 0.216 +2.81% 0.353 0.203
Some College 711,746 0.435 0.245 +0.00% 0.435 0.245
College 1,091,345 0.445 0.253 -8.23% 0.560 0.319
By Productivity

High School

Low Productivity 293,730 0.300 0.170 +8.85% 0.275 0.156
Med Productivity 539,185 0.150 0.077 +2.08% 0.145 0.072
High Productivity 734,667 0.134 0.065 +1.00% 0.135 0.065
College

Low Productivity 661,093 0.312 0.172 -24.34% 0.516 0.297
High Productivity 1,521,622 0.158 0.080 -1.22% 0.161 0.081
Notes: The counterfactual sets the distribution of health shocks, and (H,R) transition rates, for
all education types, to the Some College levels. The mean (across simulated agents) of the present
value of earnings (PVE) is expressed in 2010 dollars. CV denotes the coefficient of variation.
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Table 19: Mandatory Public Health Insurance

Benchmark Public HI
Average Medical Expenses, ages 25-64
- If covered by ESHI 3,775 3,770
- If no ESHI:

-Out-of-pocket 2,858 1,130
-Public HI - 4,032
-SI 2,886 599
-Total 5,743 5,761

Wage Offers 22.55 22.68
FT Years of Work 29.83 30.61
Mean Government Expenditures per capita
-Public HI - 689
-SI 2,098 1,336
Government Deficit per capita 2,694 2,630

Notes: Mean government expenditures per capita are calculated as the total expenditures across
all ages, divided by the total number of agents in the economy.

Table 20: Mandatory Public Health Insurance Covering 70% of Medical Expenditures

EMP (%) SI (%) PV Earnings CEV (%)

Bench Public Bench Public Bench Public Public

All 83.1 85.3 12.9 8.8 762,177 +1.3% 1.44
High School 80.2 83.3 15.9 11.0 523,423 +1.9% 2.00
Some College 82.7 85.0 14.1 10.4 711,746 +1.3% 1.12
College 86.9 87.9 8.2 4.9 1,091,345 +0.9% 0.86
High School

Low Productivity 57.1 65.1 41.6 31.6 293,730 +9.4% 1.03
Med Productivity 89.0 90.6 7.3 2.8 539,185 +0.9% 2.37
High Productivity 92.7 92.7 0.7 0.3 734,667 -0.1% 2.70
Some College

Low Productivity 69.9 74.6 28.1 20.8 425,914 +4.5% 0.83
High Productivity 95.4 95.3 0.2 0.2 997,566 +0.0% 1.49
College

Low Productivity 80.1 84.2 16.4 9.8 661,093 +4.8% 0.72
High Productivity 93.7 91.5 0.0 0.0 1,521,622 -0.8% 1.01

Notes: “EMP (%)” is the percentage of individuals employed either part or full time. All statistics are
calculated in the cross-section of individuals 25-64 years of age.
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Table 21: Labor Supply Elasticities

Age
Transitory 30 40 50 60
All 0.35 0.21 0.25 0.51
High School 0.25 0.25 0.25 0.57
Some College 0.45 0.28 0.41 0.72
College 0.38 0.10 0.15 0.31
Permanent 30 40 50 60 Total hours
All 0.92 0.98 1.67 2.42 1.32
High School 0.46 0.99 1.31 1.75 0.96
Some College 1.05 1.07 1.96 2.84 1.55
College 1.35 0.92 1.84 2.68 1.53

Notes: To calculate the labor supply elasticities, we run counterfactuals where we increase wages
at all ages (permanent) or at particular ages (transitory). These transitory wage increases are
anticipated, so these are Frisch elasticities. For permanent wage increases, we also report the
percentage change in total lifetime hours worked.
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Figures

Figure 1: Distribution of H and R, Model and Data
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Figure 2: Selected Probabilities of Transitions from Fair to Poor Health (H), High School or Less
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Figure 3: Fractions with du, s and dp Shocks by Age (Model and Data)
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Figure 4: Distribution of Employment, Model and Data (CPS)
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Figure 5: Distribution of FT Employment by Health and Age, Model and Data (MEPS)
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Note: The figure is constructed for workers with no persistent health shocks (du or dp).
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Figure 6: Wage Profiles of Full Time Workers by Health, Model and Data (MEPS)
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Figure 7: Effects of Severe Health Shocks on Average FT Wage Offers
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Figure 8: Income Inequality over the Life-cycle, Model and Data (CPS)
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Note: Income equals earnings plus interest (both pre-tax). In the CPS, income inequality is calculated using men

who are not in school or the armed forces. To reduce sensitivity of the Gini to outliers, we drop the top 2% of

income observations at each age, as well as observations on employed workers with reported wage rates below the

minimum wage. In the model, income is constructed using wages that include simulated measurement error.

Figure 9: Distribution of Medical Spending, Ages 25-64, Model and Data (MEPS)
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Figure 10: Income Inequality over the Life-cycle
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Figure 11: Effects of Health Shocks on the Distribution of H
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Note: In all three experiments we shut down health shocks at ages 25-64. (1) In “No Shocks 1” we hold employment,

income and savings fixed at baseline values, so they cannot feedback and affect health. (2) In “No Shocks 2” we let

agents adjust their labor supply and savings according to the optimal decision rules of the baseline model. (3) In

“No Shocks 3” we let agents update their decision rules for labor supply and savings to reflect the new environment.
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Figure 12: Effects of Health Shocks on Experience, Human Capital and Wage Offers
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Note: In all three experiments we shut down health shocks at ages 25-64. (1) In “No Shocks 1” we hold employment,

income and savings fixed at baseline values, so they cannot feedback and affect health. (2) In “No Shocks 2” we let

agents adjust their labor supply and savings according to the optimal decision rules of the baseline model. (3) In

“No Shocks 3” we let agents update their decision rules for labor supply and savings to reflect the new environment.
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Figure 13: Effects of Health Shocks on Wage Offers, by Education
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Note: In all three experiments we shut down health shocks at ages 25-64. (1) In “No Shocks 1” we hold employment, income and

savings fixed at baseline values, so they cannot feedback and affect health. (2) In “No Shocks 2” we let agents adjust their labor supply

and savings according to the optimal decision rules of the baseline model. (3) In “No Shocks 3” we let agents update their decision

rules for labor supply and savings to reflect the new environment. In the figures, the mean full-time offer wage is normalized to 1.0 at

age 25, within each education group. The actual means at age 25 are $13.5, $17.4 and $21.4 for the High School, Some College and

College groups, respectively.
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