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Abstract

This paper proposes a multi-state model of both functional disability and health
status in the presence of systematic trend and uncertainty. We classify each indi-
vidual observation along two dimensions: health status (other than disability) and
disability and use the multi-state latent factor intensity (MLFI) model to estimate
the transitions rates. The model is then used to calculate (healthy) life expectancy
and price a variety of insurance products. We illustrate the importance of vari-
ous factors and quantify the potential losses from model misspecification. Our
results suggest that insurers should pay great attention to health status, trend, and
systematic uncertainty in disability/mortality modeling and insurance pricing. We
also find that integrating LTC insurance with life annuity can help to reduce the
systematic uncertainties.
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1 Introduction

This paper develops a multi-state model to study the joint dynamics of functional dis-
ability and health status in the presence of deterministic trend and systematic uncer-
tainty. We illustrate how (healthy) life expectancy varies according to various factors
such as age, gender, health status, trend, and systematic uncertainty. To further high-
light the importance of these factors, we use the model to price long-term care insurance
and annuity products.

This is motivated by the recent advancement in multi-state models for disability.
Multi-state Markov chain models are widely used for long-term care (LTC) insurance
modeling. Olivieri and Pitacco (2001) consider a model with a single level of disability.
Rickayzen and Walsh (2002) develop a multiple state model to project the number of
people with disabilities in the UK. Pritchard (2006) estimates the transition intensity for
a seven-state disability model. Stallard (2011) performs multi-state life-table analysis
to measure the related LTC costs. Recently, Fong et al. (2015) use the generalized
linear model (GLM) to estimate a three-state functional disability model that allows
for discovery. Shao et al. (2017) further consider a four-state model and apply it to
estimate premiums and solvency capital requirements for a wide range of LTC insurance
products.

Despite rich research in this strand, the current literature is quite restrictive. Their
limitations stem from at least two aspects. The first aspect is that almost all previous
work on functional disability tend to group all non-disabled people together without any
consideration to health status other than disability, while there is some evidence that
health status (especially chronic illness) is significantly correlated with disability and
mortality (Brown and Warshawsky, 2013; Koijen et al., 2016; Yogo, 2016). Second,
most models tend to ignore the trend and systematic uncertainty in the disability rates
which prove to be significant in mortality models (Lee and Carter, 1992; Cairns et al.,

2006). Two recent advancements were made by Brown and Warshawsky (2013) and



Li et al. (2017). Brown and Warshawsky (2013) classify individuals into eleven states
along three dimensions: disability status, health history, and self-reported health status
and estimate the associated transition rates. They show that the premiums of LTC insur-
ance and life annuity vary significantly according to initial health status and the life care
annuity-an integration of the life annuity with LTC insurance-is attractive to pool the
different risks. However, their model does not include systematic trend and uncertainty.
Moreover, the model in Brown and Warshawsky (2013) does not fully separate health
status from disability. For example, individuals who have two or more activities of daily
living (ADL) limitation belong to the same risk category whether they are healthy or
not. The other breakthrough was made by Li et al. (2017) who incorporate the system-
atic trend and uncertainty to the multi-state functional disability model in Fong et al.
(2015) but without any reference to the health status other than disability.

Against this background we aim to incorporate the systematic trend and uncertainty
into a multi-state model that includes both a health status (reflecting relative mortality)
and a functional disability status (reflecting ADLs). At each level of functional disabil-
ity we then distinguish between differing health states in terms of mortality rates rather
than just having one level of mortality. This provides a richer classification allowing
for both health status (mortality) and functional disability. We measure an individual’s
health status through medical history of major chronic illness as this can affect an indi-
vidual’s likelihood of obtaining long-term care insurance and claiming benefits (Brown
and Warshawsky, 2013). Moreover, Koijen et al. (2016) and Yogo (2016) also pro-
vide evidence that chronic illness is correlated with disability and significantly affects
mortality. Disability status is determined by the number of difficulties in ADLs as in
the most literature. In contrast to the setting where various health factors, includ-
ing chronic illness, disability and others, are incorporated in the classification of health
states, as adopted by Brown and Warshawsky (2013), Koijen et al. (2016), and Yogo
(2016), we model the chronic illness status as an independent health state. This allows

us to better understand the interaction between chronic illness and functional disability,



e.g., the impact of chronic illness on disability (recovery) rate and mortality rate, and
the impact of disability status on chronic illness rate and mortality rate. We assume
the transitions rates between different states follow a multi-state latent factor intensity
(MLFI) model. In addition to standard covariates such as age and gender, we further
include a trend index and a common stochastic factor (which is also referred to as a
frailty) to account for systematic trend and uncertainty, respectively. This formulation
allows us to jointly model the dynamics of chronic illness, disability, and mortality, and
investigate how they are affected by the systematic trend and uncertainty.

We estimate the model based on the Health and Retirement Study (HRS) and il-
lustrate the impact of health status and various covariates. We find that the transition
rates from and into disability vary greatly depending on the health status. An individual
who has ever been diagnosed with a major illness (chronic illness) is more likely to
become disabled and less likely to recover from disability. Moreover, people who are
disabled and/or in ill health, i.e., with chronic illness, have higher mortality rates. Age
is another important factor as the disability, ill health, and mortality rates increase with
age while recovery rates from disability decrease. The disability and mortality rates are
significantly affected by gender. Females have higher risks of becoming disabled and
lower mortality rates than males but there is a lack of significant difference between
males and females in terms of recovery rates from disability. The analysis of the time
trend illustrates that there has been a significant mortality and disability improvement
trend but also an ill health expansion for the healthy population. In contrast, the ef-
fect of systematic uncertainty is less pronounced. There is enough evidence to support
the presence of uncertainty only in the disability rates for people in ill health, the ill
health rates for the disabled, and the recovery rates from the disability for the entire
population.

We then use simulations to examine the (healthy) life expectancy. It demonstrates
that life expectancy and time spent in each state for individuals aged 65 vary greatly

with respect to gender, initial health status, trend, and systematic uncertainty. For indi-



viduals who are healthy at 65: females have longer life expectancy but also more time
spent in disability; males become disabled and/or ill health earlier than females and
spent less time in the healthy state; males have a lower proportion of life expectancy
that is healthy. The presence of time trend increases the life expectancy, time with dis-
ability, and time in ill health and delayed the time of first becoming disabled and/or
ill health significantly, for both males and females. It also reduces the proportion of
healthy life expectancy. In contrast, the systematic uncertainty slightly reduces the
life expectancy but increases the time spent in disability. Moreover, the frailty process
results in considerable uncertainties in almost all statistics. The life expectancy for in-
dividuals in ill health is greatly reduced with more time spent in disability, compared
to individuals in good health. The impacts of trend and frailty are similar among indi-
viduals in ill health. We also witness an interesting observation that people with major
illnesses typically become disabled at earlier ages than individuals in good health.
To make meaningful comparisons with Li et al. (2017), we use the updated HRS data
to re-estimate the three-state models in Li et al. (2017), which ignore the health sta-
tus other than disability, and calculate corresponding summary statistics. We find that
ignoring the health status may significantly overestimate the proportion of healthy life
expectancy.

The usefulness of our model is further highlighted by its ability to illustrate the im-
pact of various factors in the fair pricing of insurance products including LTC insurance,
life annuity, and life care annuity. The premiums for these products depend heavily on
the gender and initial health status. In general, the prices of all three products are higher
for females as they have a longer life expectancy and also more time spent in disability.
The cost of LTC insurance to the ill health is 20% higher as they spend more time in
disability. In contrast, life annuity and life care annuity are around 10% more expensive
to the good health since they have a longer life expectancy.

We also investigate the roles of systematic trend and uncertainty. These factors are

of great importance as they cannot be eliminated by pooling. The time trend greatly



affects almost all insurance prices and ignoring trend can result in considerable losses,
especially for life annuity and life care annuity. For example, the time trend can con-
tribute to around 30% in the premiums of life annuity and life care annuity. In con-
trast, the systematic uncertainty increases the prices of LTC products by around 10%
but slightly decrease the premiums of other products. Our results suggest that insurers
should consider time trend in the insurance policy pricing and systematic uncertainty
in the LTC product design. We also quantify the uncertainties of the premiums arising
from the systematic risk. It demonstrates that combining the LTC insurance and life
annuity can significantly reduce the systematic uncertainties as the premium of life care
annuity has much smaller standard deviation than the sum of the stand-alone policies’
standard deviations. This is because the frailty process has opposite effects on the pre-
miums of the LTC insurance and life annuity. Therefore, our results indicate that the life
care annuity can not only pool different risks to address adverse selection but also help
to reduce systematic risks. To our best knowledge, this feature has not been observed
in the previous literature.

To further highlight the significance of health status, we use the disability model
in Li et al. (2017) to price insurance products and compare prices to those obtained
from our model. This allows us to quantify the potential losses the insurer may suffer
from model incompleteness. Because the three-state model ignores the health status,
the insurance prices lie between corresponding premiums for the good health and the
ill health in our model that incorporates the health status. The insurer who ignores the
health status overestimates the LTC premiums for the good health by around 10% and
underestimates the premiums for the ill health by up to 15%. People in good health
will find the LTC insurance too expensive and the insurer can lose 15% of premiums
for policies sold to the ill health. In contrast, the ill health will not purchase the
annuities and the insurer is likely to lose up to 5% of premiums for policies sold to
the good health. These results attest the importance of incorporating health status

into disability/mortality modeling as ignoring health status can result in considerable



welfare costs.

The rest of the paper is organized as follows. Section 2 presents our five-state model.
Section 3 describes the methodologies used in the estimation. Section 4 presents the
results. In Section 5, we use our model to price related insurance products. Section 6

concludes. Appendix A and B contain additional information.

2 Model

We extend the multi-state LTC model in Fong et al. (2015); Li et al. (2017) by incorpo-
rating the respondents’ health status. Specifically, we classify individual observations
along two dimensions: disability status and health status. We classify each individual
as functionally disabled (not functionally disabled) according to the number of ADLs
and good health (ill health) according to the health history of major illnesses, leaving

us with five states:
1. H-good health and not functionally disabled;
2. M-ill health and not functionally disabled;
3. D-good health and functionally disabled;
4. MD-ill health and functionally disabled.
5. Dead.

An individual is considered to be in ill health if he or she has ever had one of the
following illness: heart problems, diabetes, lung diseases, and stroke as these diseases
were also considered by Brown and Warshawsky (2013); he or she is classified as in
good health otherwise. Moreover, following Li et al. (2017), we classify an individual
as disabled if there are two or more difficulties in any of the six ADLs. It should be

noted that recovery from disability is allowed while recovery from ill health is not



Table 1: Types of transitions

Type of Transition | H | M | D | MD | Dead
H 1 |23 4

M 5 6

D 718 9 10
MD 11 12

Notes: This table numbers each type of transition. Each number represents a transition from
the state labeled by the row name to the state labeled by the column name.

(H)

(O (M)—{w)

Dead

Figure 1: A proposed five-state transition model

included as we are using the medical history of major illnesses.! There are twelve types
of transitions which are summarized in Table 1. Figure 1 depicts our multi-state model.

We adopt the proportional hazard specification in Li et al. (2017), which is a varia-
tion on the credit-rating transitions model used in Koopman et al. (2008). More specifi-
cally, the transition intensity for transition type s for an individual k at time ¢ is assumed

to be of the form

Aks(t) = exp{Bs + vowi(t) + asp(t)}, (D)

where (3, is the baseline log-intensity for transition type s, independent of time and
common across all individuals. The vector wy(t) contains the observed predictors for

each individual k, and we restrict our predictors to gender and age. 1(t) is a stochastic

'Our approach is in accordance with Brown and Warshawsky (2013) who argues that the health
history of a major illness can affect an individual’s likelihood of obtaining long-term care insurance
and claiming benefits.



latent process that drives systematic uncertainties, also known as a frailty. The parame-
ter vector 75 and scalar s measure the sensitivities of logarithm of A\ (¢) with respect

to wy(t) and ¥(t).

Remark 2.1. Although the GLM approach adopted in Fong et al. (2015) is flexible to
include additional covariates such as polynomial terms of age (Fong et al., 2015) and
age-time interactions (Hanewald et al., 2019), it is unable to capture uncertainty in the
transition density which has been documented in the literature. In contrast, the MLFI
approach used in this paper and also Li et al. (2017) includes a stochastic factor (frailty)
to model the uncertainty in the health dynamics. The analysis in later sections attests
the importance of the frailty factor. Moreover, our model is also flexible to include
additional covariates such as the age-time interactions and polynomial terms of age and

time trend.

The transition rates In{ )\, ;(¢)} introduced above change continuously, resulting in
difficulties in estimation and application. For tractability, we assume the transition rates
are piece-wise constant. Before we present the exact functional form of the piece-wise

constant transition rates, let us first introduce several notations:
s s-th transition type, s = 1,--- , S}
k k-thindividual, k =1,--- | K;
Fy. k-th individual’s gender, F), = 1 if the k-th individual is female and O otherwise;
1 t-th interview, ¢ = 1,--- , I;
t time (measured in years);
xk(t) k-thindividual’s age at time t;

i, the time of ¢-th interview for the k-th individual;



tA;w- the time of transition between the i-th and the 7 + 1-th interview for the k-th
individual, should it occur; tA,m- is the exact death time if the k-th individual died
during this period; otherwise, t; = (tk,i + tki+1)/2, the mid-time of the i-th and

the ¢ + 1-th interview for k-th individual.

It should be emphasized that in the HRS data the exact death time is recorded should
it occur, while the exact time of other types of transitions is unavailable. Therefore, if
a transition (other than death) occurs between two consecutive interviews, we approx-
imate the transition time with f;m-, the mid-time of the two interviews. The exact time
for death is used.

Following Li et al. (2017), we consider three models: no-frailty model, no-frailty

model with a linear time trend, and the frailty model with the time trend.
1. In the “no-frailty” model, the transition rate A\ () is assumed to be dependent
on age and sex only

s (1)} = By + 7% an(t) + L F, 2)

where [ is the reference level of A\, () and varies by transition type, x(t) is
the k-th individual’s age at time ¢, and F}, is an indicator variable whether the k-th
individual is female. v%9¢ and /"¢ measure the sensitivity of In{)\;, ;(¢)} with

respect to age and sex, respectively.

2. To model the systematic time trend in Ay s(¢), we include the linear time index

In{ A s(t)} = Bs + 729, (t) + ’ermalepk + Pst, ti <t <tpit1, (3)

where ¢ measures the the sensitivity of In{ ), ;(¢) } with respect to the time trend
(wave index).

3. We then add the latent factor ¢; to In{\ ()} to account for the systematic un-

10



certainty

In{ A s(8)} = Bs +79x, () + I, + dgi + iy, thi <t < trir1, (4)

where «; measures the the sensitivity of In{\; s(¢)} with respect to the latent

factor. The latent factor 1) is modeled as a simple random walk

WV = i1 + €, 6~ NIID(0,1), ¥ = 0. (5)

For simplicity, we assume that the transitions rates are only updated at either the

time of survey (¢ ;) or the time of transition (fk,,-).

3 Estimation

3.1 Data

We use the Health and Retirement Study (HRS) data from the University of Michigan,
which is a comprehensive and ongoing U.S. national longitudinal household survey
of people aged 50 and above starting from 1992. The surveys are conducted every
two years and include questions on respondents’ health histories, health statuses, and
physical and cognitive disability statuses. We use data from wave 1998 onward because
there were inconsistencies in the survey questions before wave 1998 (Fong et al., 2015).
The latest wave available now is in 2014, leaving us with 9 waves in total (wave 4-12).
Table 2 gives information on each concerned variable in the HRS data.

We use maximum-likelihood method to estimate the model parameters and then

recover the frailty process via Kalman filter and smoother.
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Table 2: HRS data variable description
Variable Description

HHIDPN HHID is the 6-character HRS household identifier, and PN is the 3-character person number.
RAGENDER  Gender

RABMONTH Birth month.

RABYEAR Birth year.

RADMONTH Death month.

RADYEAR Death year.

WAVE The number of wave.

RxIWSTAT Wave X interview status.

RxIWENDM  Wave x interview end month.

RxIWENDY  Wave x interview end year.

RxAGEM_E Age (months) at interview end date for wave x.
RxAGEY_E Age (years) at interview end date for wave x.
RxWALKR Difficulty-Walk across room.

RxDRESS Difficulty-Dressing.

RxBATH Difficulty-Bathing or showirng.
RxEAT Difficulty-Eating.

RxBED Difficulty-Get in/out of bed.
RxTOILT Difficulty-Using the toilet.

RxDIABE Ever had diabetes.
RxLUNGE Ever had lung disease.
RXHEARTE  Ever had heart problems.
RxSTROKE Ever had stroke.

3.2 Maximum-likelihood estimation

We use maximum likelihood to estimate our models. Before we proceed, let us first

introduce several notations:

Yisi Yisi = 1if k-th individual experiences a transition of type s between i-th and

1 + 1-th interview and O otherwise;

Ry s(t) Rys(t) = 1if k-th individual is exposed to transition type of s at time ¢ and 0

otherwise;
Fi information available immediately after the i-th wave.

Let 6 denote the parameters of interest, then the likelihood functions of the no-frailty

model and the no-frailty model with the time trend are

K I S

L(0|Fr) = H H H exp{ Vi In{ N5 (ti) } — Riess (tii) (b — i) M ()
k=1 i=1 s=1 (6)

— Rpo(tei) (trivs — tri) Mes(ted) 1,

12



where the corresponding Ay s(¢) should be inserted, i.e., (2) for the “no-frailty” model
and (3) for the “no-frailty” model with time trend.

The likelihood function of the frailty model conditional on W, the complete path of
P(t), is

I

K s
L(0|F;, V) = H H H exp{ Vi In{ s (thi) } — Rieys (thi) (B — i) M ()
k=1 i=1 s=1 (7)

— Ris (i) (trivs — tri) Mes(tei) 1

where A s(t) is given by (4), and the likelihood function of the frailty model is
LOIF) = [ LOIF wir(w) ®

The high-dimensional integral makes the MLE evaluation computationally inten-
sive. We instead use Monte Carlo and simulate N paths of ¥ denoted by Wl ... ¥V,

We then construct the MC estimator of (8) as

R 1 &
L(O|F;) = NZL(M}},\P[”U 9)

n=1

for parameter estimation.

We would like to comment on the computational efficiency of the GLM approach
adopted in Fong et al. (2015) and our approach. The GLM approach is computationally
more efficient and the computation can be done typically within a few seconds, making
model comparison and selection easy. For our approach, the no trend and no frailty
model can be estimated efficiently (within a few minutes). In contrast, the inclusion
of the frailty factor ¢/ in the frailty model requires extra computational costs to eval-
uate the sum (9). The process can take more than hundreds of hours. Therefore, our
model adds flexibility (to model the uncertainty) at the expense of extra computational

cost. Nevertheless, noting the fact that each summand in (9) is independent from others
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thanks to the independence between different paths of ¢/, we can make use of the paral-
lel computing to evaluate the sum, greatly facilitating the numerical optimization of the

likelihood function.

3.3 Recovery of the frailty process

We modity the approach in Li et al. (2017) to recover the frailty process. The main idea,
proposed by Durbin and Koopman (1997); Koopman et al. (2008), is to approximate the
distribution of Y}, , ; with Gaussian distribution as close as possible.

Consider the following state-space representation

Vi = i1+ €, €~ NIID(0,1), ¢ =0,
(10)

Yk.si = aswi + gk,s,ia gk,s,i ~ NI]D(Ck,s,iy Ck,s,i)y if Rk,s(tk,i) - 17

where

Ynsi = Yisi — (Bs + 739w (fh,) + yfemale 4 bsi). (11)

We use the state space model (10) to estimate the path of the systematic latent factor

given the observations and the MLE estimates of the parameters

l l
{/617"' 7ﬂ57/yilge7"' ange77{emae>"' a’XchemaeaCbh'" ang?alv'” 7&S}~ (12)

The observation equation is equivalent to Yy, ; ; = ln{/\k,s(fk,i)} + & s.i» which maps the
observation Y}, ;; to the corresponding log-transition-rate, if the individual is exposed
to the risk.

The state-space model (10) differs from that of Li et al. (2017) in two aspects. First,
we only include 1) as the state variable as other parameters are already known from the
MLE estimate. Second, we include only the observations such that the individual is
exposed to that particular type of transition.

In order to make the model parsimonious, we assume that Cj, s ; = /@f and ¢ 5; =

14



¢;. Following Durbin and Koopman (1997), we choose ~? and ¢; such that the non-
Gaussian density and the approximating Gaussian density are as close as possible in the

neighborhood of 1);. This requires

D 0, (13)
82li(U) B
002 =0, (14)

where ;(v) = In p;(Y|v, ;) — In g;(Y|v, Fy),

K s
pi(Y|v, Fr) = H H exp{ Vi, In{ Ak (Fi) } = Rios (tri) (Tri — tri) Meos (Ei)
k=1s=1 (15)

— Ris(tei) (trivs — tri) Mes(fed) 1,

and
_ (yk,s,i—@slﬁi—Ci)Q

K S
1 - 5.2
g(Ylo,Fr) =111 = T Rt (16)

k=1 s=1

We then use the Kalman filter and smoother to compute the posterior mean and
variance of ¢). We will not treat the filtering and smoothing of multivariate series in the
traditional way by taking the entire observational vector {yy s ;} as the items for analy-
sis. There are two reasons. First, s x k£ is typically a large number, making the problem
intractable. Second, because an observation yy s ; is included only if Ry s(tx;) = 1, the
dimensionality of {yy s ;} varies over time.

We follow Koopman and Durbin (2000) to introduce the elements of the observa-
tional vectors one at a time into the filtering and smoothing processes, thus in effect
converting the original multivariate time series into a univariate time series. This device
offers significant computational gains. We briefly describe the filtering and smoothing
procedures in Algorithm 1 and Algorithm 2 in Appendix A. Algorithm 3 in Appendix
A gives the 1@ = E(¢;|Fr) and variance V; = Var(v;| F;).

To estimate the complete path of 1), we start with an initial guess for 1), compute x?

15



and (;, use Kalman filter and smoother to generate the next estimate for v/, and repeat

until convergence. This is summarized in Algorithm 4 in Appendix A.

4 Results

4.1 Estimated coefficients

Based on the methods described in Section 3.2, we obtain the MLE estimates for the
coefficients in three models. For the frailty models, we simulate 1,000 paths for the
frailty factor. Table 3 and 4 report the parameter estimates of our model. There are

several interesting observations.

Table 3: Parameter estimations (Monte Carlo MLE)

Transition Type H-M H-D H-MD H-Dead M-MD M-Dead
s = 1 2 3 4 5 6
No Frailty Bs -4.8548%** .0 8826%** -12.2034%**  _1]1.1331¥¥* -7.2304%** -02935%**
(0.016) (0.0261) (0.0479) (0.0252) (0.0176) (0.0170)
yg9¢ 0.0268%**  0.0768***  0.0936%** 0.1006***  0.0523***  (0.0841***
(0.0002) (0.0003) (0.0006) (0.0003) (0.0002) (0.0002)
ryfemale -0.3174%%%  (0.2679%** 0.1402%* -0.5518***  (0.3831%***  -0.2716%**

(0.0213) (0.0312) (0.0581) (0.0350) (0.0225) (0.0252)
Log Likelihood -77041

No Frailty with Trend 3, 4.8565FFF Q8825 _12.0034%wx  _]1.1305%kk  72309%kE 9 29Dk
(0.016) (0.0261) (0.0479) (0.0252) (0.0176)  (0.0170)

~age 0.0251%%%  0.0793%%%  0.0965%FF  .1042%+%  (.054%%x  (.088%**

(0.0002)  (0.0003) (0.0006) (0.0003) (0.0002)  (0.0002)

femate [03201%FF  0.2683%F%  0.1403%%  0.5510%F%  (.3837+x  0.2702%%

0.0213)  (0.0312) (0.0582) (0.0351) 0.0225)  (0.0252)

s 0.0306%%% 0.0475%+ 0.0558%F%  _0.0721%FF  0,0282%%% _0.0719%+*

(0.0035) (0.0059) (0.0107) (0.0057) (0.0036) (0.0036)
Log Likelihood -76941

Frailty B, 4.8819%FF Q8858w 12,0858k |1.1111%FF  723T6RRE 9 DT5FHkk
(0.0160)  (0.0261) (0.0479) (0.0252) (0.0176)  (0.0170)

~age 0.0254%%%  0.0792%%%  0.0979%*%  (.1039%**  (.054%%%  (.0875%**

(0.0002)  (0.0003) (0.0006) (0.0003) (0.0002)  (0.0002)

female (0323486 02712%%%  (.1458%%  L0.5462%F%  (.3852%%%  0.2676%

0.0213)  (0.0311) (0.0573) (0.0350) (0.0225)  (0.0252)

s 0.0328%%% 0.0427%%% _0.0008%%%  _0.0715FFF  0.0269%% -0.0643%+*

(0.0035)  (0.0059) (0.0110) (0.0057) (0.0036)  (0.0036)

o -0.0108 -0.0235 0.0454 -0.0014 -0.0058  -0.0358%*

(0.0118) (0.0217) (0.0402) (0.0027) (0.0100) (0.0153)
Log Likelihood -76928

Notes: A s(t) calculated from above figures are annual rates, and for the frailty model
N = 1000. *p < 0.10; **p < 0.05; ***p < 0.01. Standard errors of the estimation are
displayed in the parentheses.
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Table 4: Parameter estimations (Monte Carlo MLE) cont’d

Transition Type D-H D-M D-MD D-Dead MD-M MD-Dead
5= 7 8 9 10 11 12
No Frailty Bs 0.4045%**  -1.9752%*%  -43002%** -7.9428%*%*%  -0.0146  -6.2404***
(0.0351) (0.0864) (0.0603) (0.0406) (0.0249) (0.0195)
y39e -0.0323***  -0.0229%*%*  0.0144**%*%  0.0736*** -0.0302%**  (.0578***
(0.0005) (0.0012) (0.0008) (0.0005) (0.0003) (0.0002)
ryfemale -0.0318 -0.1688 0.1459%*%  -0.4648%** 0.0016 -0.3129%**
(0.0415) (0.1042) (0.0692) (0.0497) (0.0306) (0.0250)
Log Likelihood -77041
No Frailty with Trend [ 0.4042%%*  -1.9753%**  -43003*** -7.9431*%*%*%  -0.0155  -6.2411%**
(0.0351) (0.0864) (0.0603) (0.0406) (0.0248) (0.0195)
y29¢ -0.0317#**  -0.0218***  0.0142%**  0.0741%*%* -0.0307***  (0.0588%**
(0.0005) (0.0012) (0.0008) (0.0005) (0.0003) (0.0002)
ryfemale -0.0320 -0.1688 0.1458%*%  -0.4650%** 0.0009 -0.3139%**
(0.0415) (0.1042) (0.0691) (0.0497) (0.0306) (0.0250)
Os -0.0128 -0.0220 0.0035 -0.0092 0.0101*  -0.0182%**
(0.0085) (0.0208) (0.0134) (0.0088) (0.0053) (0.0041)
Log Likelihood -76941
Frailty Bs 0.4088***  -1.9761%** -43012%*%* -7.9530%*%*  -0.0150  -6.2490%**
(0.0351) (0.0863) (0.0603) (0.0406) (0.0211) (0.0195)
y39e -0.0312*%**  -0.0195%**  0.0147***  0.0741%*%* -0.0300%**  (0.0591%**
(0.0005) (0.0012) (0.0008) (0.0005) (0.0003) (0.0002)
ryfemale -0.0300 -0.1695% 0.1451%*%  -0.4672%** 0.0011 -0.3161%**
(0.0397) (0.0982) (0.0666) (0.0496) (0.0022) (0.0250)
Os -0.0296%**  -0.0691***  -0.0135 -0.0041 -0.0115%*  -0.0238***
(0.0084) (0.0219) (0.0119) (0.0054) (0.0052) (0.0040)
Qg 0.0855%** -0.0667 0.1024* -0.0375 0.1029%*%* 0.0282
(0.0320) (0.0716) (0.0540) (0.0329) (0.0226) (0.0173)
Log Likelihood -76928

Notes: A s(t) calculated from above figures are annual rates, and for the frailty model
N = 1000. *p < 0.10; **p < 0.05; ***p < 0.01. Standard errors of the estimation are
displayed in the parentheses.
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Baseline intensity

The examination of 3 reveals the fact that an individual with major illness history is
more likely to become disabled and less likely to recover from disability. Moreover,
people who are disabled and/or in ill health have higher mortality rates, in line with the

results in Brown and Warshawsky (2013).

Age

All transition rates are age-dependent and consistent with the results in Fong et al.
(2015) and Li et al. (2017). The inspection of signs of v$9¢ shows that disability (H-D,
H-MD, and M-MD), ill health (H-M, H-MD, and D-MD), and mortality rates (H-Dead,
M-Dead, D-Dead, and MD-Dead) increase with age while recovery rates from disability
(D-H, D-M, and MD-M) decrease. An exception is the transition rate from disability to

ill health (D-M), which decreases with age.

Gender

Gender has strong impacts on disability, ill health, and mortality rates. On average,
females have higher risks of becoming disabled and lower mortality rates than males.
There is no significant difference between males and females in terms of recovery from
disability. These results are consistent with the conclusions in Fong et al. (2015) and
Li et al. (2017). However, the ill health rate is ambiguous. Healthy females are less
likely to become ill health while disabled females are exposed to greater ill health
risks. Given the gender patterns, we can expect that women have longer life expectancy
but also spend more time in disability states. We confirm this via simulations in Section

4.3.
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Table 5: Posterior mean and variance of v
Year 1998 2000 2002 2004 2006 2008 2010 2012

Mean 0.0762 -0.8107 0.2578 0.1151 1.3856 -0.1952 2.2714 0.3587
Variance 0.1222 0.1350 0.1542 0.1611 0.1657 0.1706 0.2023 0.2666

Trend

Similar to Li et al. (2017), the time trend plays a significant role in most transitions.
There has been a significant mortality and disability improvement trend but also an ill
health expansion trend for the healthy population. The no-frailty model also shows
the improvement trend in mortality and disability for the ill health. Incorporating the
systematic uncertainty, the frailty model suggest that there has been a deterministic

improvement in the recovery rates from disability.

Systematic uncertainty

We find that the frailty affects the mortality rate only for the ill health and the ill health
rate for the disabled. The recovery rates from disability for the entire population also
have significant uncertainties. These results are somehow in contrast to Li et al. (2017)

who documented the uncertainties in the disability and recovery rates.

4.2 Posterior mean of the frailty

Based on these estimated parameters and the algorithms discussed in Section 3.3, Table
5 reports the posterior mean and variance of 1. Figure 2 shows the posterior mean and
the corresponding 95% confidence interval of the frailty process. Each year on the x
axis represents a wave starting from that year.

The posterior mean of the frailty process fluctuates around O in the past years and
we can claim, with 95% confidence, that the frailty factor is negative in 2000-2002 and

is positive in 2006-2008 and 2010-2012.
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Figure 2: Posterior mean of the latent frailty process v
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4.3 Life expectancy and distribution of disability

We further perform micro-simulations to generate individual life histories and quantify
future lifetime and time spent in each state. We use the parameter estimates from the
three models to simulate the life path for each combination of genders (male and female)
and initial states ( good health: state 1 and ill health: state 2).

The simulation is run monthly to be consistent with the fact that the insurance payout
is typically on a monthly basis.> Although the health transition matrix is estimated
annually, we run the simulation monthly by assuming the transition intensity is constant
within a year. This assumption has also been used by Shao et al. (2017). Moreover, in
mortality modeling it is also common to assume the force of mortality is piece-wise
constant.

The initial age is 65 and the maximum age is 100. For the models without frailty,
we consider 10,000 homogeneous lives. For the frailty model, we first simulate 1,000
paths of the frailty process and consider 10,000 homogeneous lives for each path of the
frailty process. The initial value of the simulated frailty process is set to the posterior
mean of ¢ in 2012. The setting corresponds to an individual aged 65 in 2012.

Table 6 presents summary statistics for healthy males and females under three mod-
els. The life expectancy and time spent in each state of individuals aged 65 vary greatly
with respect to gender and the model specification. Consistent with intuition, females
have longer life expectancy but also more time spent in disability. However, males spent
less time in the healthy state (state 1). The eleventh row shows the proportion of life

expectancy that is healthy, which is defined as the following ratio

HLE  healthy life expectancy (time in state 1)
TLE total life expectancy '

Interestingly, males have lower HLE /TLE under three models. The last two rows report

2We also perform the simulation on a yearly basis. The relative differences are small and all results
are qualitatively the same.
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respectively the first age of becoming disabled and ill health. Males become disabled
and/or ill health earlier than females. Inspection of different columns allows us to
examine the importance of time trend and/or systematic uncertainty on (healthy) life
expectancy. The presence of time trend increases the life expectancy, time with disabil-
ity, and time in ill health and delayed the time of becoming disabled and/or ill health
significantly, for both males and females. It also reduces the proportion of healthy life
expectancy. In contrast, the systematic uncertainty slightly reduces the life expectancy
but increases the time spent in disability. The frailty process also has marginal effects
on the proportion of healthy expectancy and the expected first ages of becoming dis-
abled or ill health. The 95% confidence intervals are reported in the parentheses.® It
demonstrates that the presence of frailty process leads to considerable uncertainties.

Table 7 reports corresponding findings for males and females in ill health (state 2)
under three models. The life expectancy for individuals in ill health is greatly reduced
with more time spent in disability, compared to people in good health. An interesting
observation is that people with major illnesses become disabled at earlier ages than
people in good health, which is consistent with the result in Brown and Warshawsky
(2013). These results suggest that expected lifetime and time with disability vary greatly
depending on the initial health status. The impacts of trend and frailty are similar among
individuals in ill health.

To make meaningful comparisons with Li et al. (2017) and further highlight the ef-
fect of health status, we re-estimate the three-state models in Li et al. (2017) but with
the updated HRS data. The models have three states: H-healthy, D-disabled, and Dead.
The estimated parameters are reported in Table 15 in Appendix B. Table 8 presents the
corresponding summary statistics. Because these models ignore the health status other
than disability, the statistics lie between corresponding entries for good health individ-

uals in Table 6 and ill health individuals in Table 7. A comparison between HLE/TLE

3We focus on the uncertainty arising from the frailty process and abstract away from the simulation
error, in other words, the confidence intervals reported here are based on the estimate Var(E[X |¥]) where
X is the corresponding statistic.
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in Table 6 and 8 reveals the fact that ignoring the health status may significantly overes-
timate the proportion of healthy life expectancy. This further highlights the importance
of health status. Examination of different columns shows that the time trend has a large

impact while including the frailty process leads to considerable uncertainties.

S Pricing related insurance products

In this section, we use micro-simulations to estimate the actuarially fair values of LTC
insurance, life annuity, and life care annuity under different models. We aim to measure
the impact of trend and systematic uncertainty on insurance pricing and quantify how

the expected costs of these insurance products vary according to initial health status.

5.1 Impacts of trend, uncertainty, and health status

Similar to Brown and Warshawsky (2013) and Shao et al. (2017), we first create an
LTC policy that pays $3,000 a month while the insured is disabled. We impose a 3-
month waiting period, which is common among LTC insurance policies. In addition,
we consider a life annuity that pays $1,000 while the insured is alive. Finally, we create
a synthetic life care annuity that pairs the above life annuity with the aforementioned
LTC insurance.

Table 9 shows the single net premiums of these insurance policies for 65-year-old
individuals with different gender and initial health statuses under three models. Consis-
tent with intuition, insurance prices vary greatly according to gender and initial health
status. In general, the prices are higher for females as females have longer expectancy
and also more time spent in disability. The cost of LTC insurance to the ill health is
20% higher as they spend more time in disability. In contrast, a life annuity is around
10% more expensive to the good health since they have a longer life expectancy. The
last few rows show that the life care annuity which combines the LTC insurance with

life annuity narrows the gap between insurance prices for the good health and the ill
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health. In the frailty model, the premium of the LTC for a male in ill health is 23.43%
more expensive than that for a male in good health, while the cost of the life annuity to
a male in ill health is 10.58% cheaper than that to a male in good health. In contrast,
the premium of the life care annuity to a male in ill health is only 4.95% cheaper than
that for a male in good health. This suggests that it could be attractive to pool the two
risk categories in insurance design.

The examination of columns reveals the effects of deterministic trend and systematic
uncertainty. For healthy individuals, the time trend slightly increases the LTC premium
while the uncertainty can drive it up by nearly 10%. For example, the premium of the
LTC insurance for a healthy male is $31,694 under the “no frailty” model, while the
premiums under the trend and frailty models are 4.18% and 13.12% more expensive
than that under the “no frailty” model, respectively. For individuals in ill health, the
effect of trend is more pronounced. The presence of trend increases the LTC premiums
for males and females in ill health by 10.1% and 7.45%, respectively. On top of that,
the frailty can further raise the costs by 6.98% and 7.45%, for males and females in ill
health, respectively. For life annuity, the inclusion of the time trend increases the prices
by around 20% for good health males and ill health females. The trend pushes the
premiums of life annuity up by almost 25% for males in ill health and 15% for females
in good health. In contrast, the effect of uncertainty is marginal as it slightly decreases
the premiums of life annuity. These results are indeed consistent with the impacts of
trend and uncertainty on life expectancy and time spent in disability (Table 6 and 7).
Because the life care annuity is the integration of LTC insurance and life annuity, and
the actuarial cost of the life annuity is much larger than that of LTC insurance, the
impacts of trend and uncertainty on the premiums of the life care annuity are similar to
the case of the life annuity.

We also compute the standard errors of the premiums in the frailty model which

are displayed in the parentheses.* In general, the premiums of insurance products for

“We focus on the uncertainty arising from the frailty process and abstract away from the simulation
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individuals in ill health have larger uncertainties than people in good health. Moreover,
the premiums of LTC insurance and life care annuity for females exhibit much higher
uncertainties than males. In contrast, the uncertainties of premiums of life annuity for
males are only slightly larger than that for females.

Another interesting observation is that the standard deviation of the life care annuity
is much smaller than the sum of standard errors of the LTC insurance and life annuity
because the frailty process has opposite effects on the premiums of the LTC insurance
and life annuity. For a 65-year old healthy male, the uncertainties of the premiums
of LTC insurance and life annuity are $2,939 and $2, 747 while that of the life care
annuity is only $1, 051. Therefore, the integration of the stand-alone policies can reduce
the systematic uncertainties arising from the frailty process significantly. This pattern
persists for individuals with different genders and initial health statuses as well. This
highlights an important feature of life care annuity. In general, the systematic risk of
the stand-alone policies cannot be eliminated. Our results indicate that combining the
life annuity with LTC insurance is attractive to reduce the systematic uncertainties of
the premiums. If the uncertainties were to be priced, then the life care annuity has a
lower cost than the sum of the stand-alone policies.

A typical feature included in LTC insurance and life annuity policies is inflation
protection. We additionally consider insurance policies whose benefits grow 3% per
annum. Table 10 presents the relevant premiums under inflation protection. All our
previous findings remain valid. The gaps between premiums for the good health and
ill health are still significant. Under the frailty model, the LTC insurance premiums
for the ill health are 15.29% and 17.33% more expensive than that for the good health
males and females, respectively. The premiums of annuity for the good health are more
than 10% higher than that for the ill health. The gaps between the good health and

the ill health narrows down to around 7% when the LTC insurance and life annuity are

error, in other words, the standard errors reported here are based on the estimate Var(E[X|¥]) where X
is the present value of the corresponding insurance product.
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integrated. Moreover, the time trend greatly affects almost all insurance prices and the
effects are more pronounced among life annuity and life care annuity. For example, the
time trend can contribute to around 30% in the premiums of life annuity and life care
annuity but less than 20% in the premiums of LTC insurance. In contrast, the systematic
uncertainty increases the prices of LTC products by nearly 10% but slightly decrease the
premiums of other products. A comparison between Table 10 and 9 shows that inflation
protection increases the uncertainties of the premiums significantly. Consistent with our
previous findings, the premium of life care annuity has smaller standard errors than the
sum of that of stand-alone policies.

The above analysis highlights the importance of including time trend and systematic
uncertainty in the insurance policy pricing. Ignoring trend can result in losses equivalent
to around 30% of the premiums for life annuity and life care annuity, and 10% of pre-
miums for LTC insurance. The neglect of systematic uncertainty can lead to additional
10% loss of premiums for LTC insurance. The presence of the frailty process also leads
to considerable uncertainties in the premiums of insurance products. We illustrate that
the life care annuity-an integration of the life annuity with LTC insurance-is attractive
to pool not only different health risks but also systematic uncertainties. The compari-
son across individuals also attests that the gaps between prices for different genders and

health statuses are considerable.

5.2 Cost of ignoring health status

Suppose that the model proposed in this paper is close to the model that governs the
dynamics of disability, chronic illness, and mortality but an insurer ignores the health
status and uses the disability model in Li et al. (2017) to price insurance products. How
much can the insurer lose due to the model incompleteness? This section attempts to
quantify such losses. We have estimated the three-state model in Li et al. (2017) with

the updated HRS data and the estimated parameters are summarized in Table 15. Based
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on these parameters, we use simulations to price the three aformentioned insurance
products. Table 11 shows the premiums for these products without inflation protection.
It should be noted that the time trend still increases the actuarial costs of insurance
products significantly while the frailty process leads to considerable uncertainties.

Table 12 compares the prices to corresponding premiums for the good health and
ill health in our five-state model. Because the three-state model ignores the health sta-
tus, the insurance prices lie between corresponding premiums for the good health and
ill health in the five-state model and this effect is more pronounced in LTC insurance
products. For example, in the frailty model, the insurer who ignores the health status
sells the LTC insurance to males at $38,421 (Table 11), irrespective of the policyhold-
ers’ initial health status. In fact, the product is valued at $35,801 (Table 9) for good
health males and $44, 189 (Table 9) for ill health males, if the actual health dynamics is
more close to our five-state model with frailty. Therefore, the insurer overestimates the
LTC premiums for males in good health by 7.32% and underestimates the premiums
for males 1in ill health by 13.05%. Under such a pricing scheme, the LTC product is
too expensive to the good health but appealing to the ill health, resulting in adverse
selection problems. Moreover, if the insurer sells the LTC insurance to males in ill
health at $38, 421 which it should sell at $44, 189, the insurer loses 13.05% of premi-
ums. We have similar observations for females and the insurer can lose up to 14.67%
of premiums from the LTC insurance sold to females in ill health.

The pattern is reversed for annuity products. If the insurer ignores the initial health
status, it overestimates the life annuity premiums for the ill health and underestimates
the premiums for the good health. Moreover, it can lose up to 6.34% of premiums for
policies sold to the males in good health and 4.91% for policies sold to the females in
good health. However, the difference between premiums of life care annuity for the
good health and the ill health is much smaller, no more than 4%. This, again, suggests
that it 1s attractive to integrate LTC insurance with life annuity.

Table 13 shows the premiums for these products with inflation protection. The trend
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is still significant in all products while frailty is more important in LTC insurance pric-
ing, especially for females. Table 14 compares the prices to corresponding premiums
for the good health and 1ill health in the five-state model. All of our previous findings
persist in the presence of inflation protection. The insurer can lose more than 10% of
premiums for LTC insurance sold to the ill health and up to 7.88% of premiums for
annuities sold to the good health.

Ignoring health status in the disability/mortality modeling has a significant impact
on insurance pricing and can result in considerable welfare costs because the insurer
who ignores health status cannot exploit the difference between insurance premiums
for the good health and 1ill health. Individuals in good health will find the LTC insur-
ance expensive and the insurer underestimates the premiums for policies sold to the ill
health. In contrast, people in ill health will not purchase the annuities and the insurer is
likely to underestimates the premiums for policies sold to the good health. These results
further highlight the importance of incorporating health status into disability/morality

modeling.

6 Conclusion

We have proposed and estimated a five-state model of both functional disability and
health status change with systematic trend and uncertainty. The classification of each
individual along both disability and health status (other than disability) allows us to
quantify the impact of health status on life expectancy and insurance pricing. Therefore,
our model can address both health status and the inclusion of systematic trend and
uncertainty, two aspects that rarely appear in the literature.

We have illustrated that ignoring health status can lead to considerable losses for
the insurer because the insurer cannot exploit the difference between premiums of in-
surance products for individuals with different health statuses. We have also assessed

the effects of trend and uncertainty. We demonstrated that trend is important in deter-
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mining life expectancy and insurance products such as life annuity and life care annuity,
while the effect of systematic uncertainty is more pronounced in disability and related
LTC insurance pricing. The potential losses from the neglect of trend and uncertainty
can be considerable. The presence of the frailty process also leads to significant uncer-
tainties in the premiums of insurance products. Our final contribution lies in showing
that integrating LTC insurance with life annuity can help to reduce the systematic un-
certainties arising from the frailty process. These provide new directions for the design

of aged-care insurance products.
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A Algorithms in Section 3

Algorithm 1 Filtering

Seta;; =0,P; =1
for: =1to [ do
for k =1to K do
fors=1to S do

n=s+(k-1)8
if Rk,s(tk,i) = 1 then
Fn,i - O@Pn,z’

Kn,i - Oézpn,i/Fn,i
Unji = Yk,s,i — asan,i/Fn,i
Unpt1,i = Ani + Ky iU
Pn+1,i = Pn,i - K72l77;Fn,i
else
Qp+15 = Qng
Pn+1,i = Pn,i
end if
end for
end for
if i < I then
A1,i41 = AKS+1,4
Py = Pgsi+1
end if
end for
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Algorithm 2 Smoothing
Set TIKS = OyNI,KS =1
for: =1to2do
for k=K to1ldo
for s = Sto1ldo
n=s+(k—-1)S
if Rk,s(tk,i) = 1 then
L,;=1—-0o;K,;
Tn—1i = QsUni/Fni+ LT
anl,z' = Oéz/Fn,i + L%JNn,i
else

Tn—1,i = Tn,i
Nn—l,i = Nn,i
end if
end for
end for
if 7 > 1 then
TKSi—1 = To,
Nrsi—1 = No
end if
end for

Algorithm 3 Smoothed State ¢); = E(¢;| F;) and Variance V; = Var(i;| F;)
fori=1todo
@@z‘ =ay; + P10,
Vi= P — P} No;
end for 7

Algorithm 4 Estimate v
Simulate a path of 1
repeat
compute x? and (; from (13) and (14)
use Kalman filter and smoother, i.e., Algorithms 1, 2, and 3, to estimate 1) from
(10)
until the estimated ) converges
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Figure 3: The three-state transition model in Li et al. (2017)

B Lietal. (2017) revisited

Li et al. (2017) considered a three-state model: healthy, disabled, and dead, as shown in
Figure 3. An individual is classified as disabled if he or she has two or more difficultiess
in ADLs. The functional forms of the transition intensities are as of (2), (3), and (4).
We use the updated HRS data to estimate the coefficients, which are reported in Table

15.
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Table 15: Parameter estimations (Monte Carlo MLE)

Transition Type H-D H-Dead D-H D-Dead
5= 1 2 3 4
No Frailty Bs -8.7226%**  -10.3676%**  (0.2433%%*  -6.5344%**
(0.0139) (0.0141) (0.0197) (0.0176)
yg9e 0.0693***  (0.0953***  -0.0320%**  0.0605%**
(0.0002) (0.0002) (0.0003) (0.0002)
ryfemate 0.2589%**  -0.4461*** 0.0088 -0.3649%**
(0.0174) (0.0204) (0.0240) (0.0223)
Log Likelihood -58956
No Frailty with Trend S, -8.7232%%*  -10.3670%**  (0.2427***  -6.5351***
(0.0139) (0.0141) (0.0197) (0.0176)
yo9e 0.0708***  0.0985***  -0.0315%**  (0.0611%**
(0.0002) (0.0002) (0.0003) (0.0002)
ryfemate 0.2588%**  -0.4458%** 0.0084 -0.3658***
(0.0174) (0.0204) (0.0240) (0.0223)
Os -0.0276%**  -0.0605%**  -0.0089**  -0.0118%%**
(0.0030) (0.0030) (0.0044) (0.0037)
Log Likelihood -58897
Frailty Bs -8.7236%**  -10.3661***  (0.2463***  -6.5365%**
(0.0140) (0.0141) (0.0198) (0.0176)
y29e 0.071%%* 0.098***  -0.0301***  (0.0615%**
(0.0002) (0.0002) (0.0003) (0.0002)
ryfemale 0.2591%**  -0.4455%** 0.0104 -0.3675%**
(0.0174) (0.0204) (0.0209) (0.0223)
Os -0.0321%**  -0.0511*%*  -0.0387*** -0.0194***
(0.0030) (0.0030) (0.0044) (0.0037)
Qs 0.0177 -0.0365**  0.1092%** 0.0313*
(0.0151) (0.0153) (0.0205) (0.0188)
Log Likelihood -58890

Notes: A s(t) calculated from above figures are annual rates, and for the frailty model
N = 1000. *p < 0.10; **p < 0.05; ***p < 0.01. Standard errors of the estimation are
displayed in the parentheses.
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